7,957 research outputs found

    CFA optimizer: A new and powerful algorithm inspired by Franklin's and Coulomb's laws theory for solving the economic load dispatch problems

    Full text link
    Copyright © 2018 John Wiley & Sons, Ltd. This paper presents a new efficient algorithm inspired by Franklin's and Coulomb's laws theory that is referred to as CFA algorithm, for finding the global solutions of optimal economic load dispatch problems in power systems. CFA is based on the impact of electrically charged particles on each other due to electrical attraction and repulsion forces. The effectiveness of the CFA in different terms is tested on basic benchmark problems. Then, the quality of the CFA to achieve accurate results in different aspects is examined and proven on economic load dispatch problems including 4 different size cases, 6, 10, 15, and 110-unit test systems. Finally, the results are compared with other inspired algorithms as well as results reported in the literature. The simulation results provide evidence for the well-organized and efficient performance of the CFA algorithm in solving great diversity of nonlinear optimization problems

    A hybrid Jaya algorithm for reliability–redundancy allocation problems

    Full text link
    © 2017 Informa UK Limited, trading as Taylor & Francis Group. This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching–learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability–redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series–parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30–100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results

    Reliable fault-tolerant model predictive control of drinking water transport networks

    Get PDF
    This paper proposes a reliable fault-tolerant model predictive control applied to drinking water transport networks. After a fault has occurred, the predictive controller should be redesigned to cope with the fault effect. Before starting to apply the fault-tolerant control strategy, it should be evaluated whether the predictive controller will be able to continue operating after the fault appearance. This is done by means of a structural analysis to determine loss of controllability after the fault complemented with feasibility analysis of the optimization problem related to the predictive controller design, so as to consider the fault effect in actuator constraints. Moreover, by evaluating the admissibility of the different actuator-fault configurations, critical actuators regarding fault tolerance can be identified considering structural, feasibility, performance and reliability analyses. On the other hand, the proposed approach allows a degradation analysis of the system to be performed. As a result of these analyses, the predictive controller design can be modified by adapting constraints such that the best achievable performance with some pre-established level of reliability will be achieved. The proposed approach is tested on the Barcelona drinking water transport network.Postprint (author's final draft

    Reliability and Makespan Optimization of Hardware Task Graphs in Partially Reconfigurable Platforms

    Get PDF
    This paper addresses the problem of reliability and makespan optimization of hardware task graphs in reconfigurable platforms by applying fault tolerance (FT) techniques to the running tasks based on the exploration of the Pareto set of solutions. In the presented solution, in contrast to the existing approaches in the literature, task graph scheduling, tasks parallelism, reconfiguration delay, and FT requirements are taken into account altogether. This paper first presents a model for hardware task graphs, task prefetch and scheduling, reconfigurable computer, and a fault model for reliability. Then, a mathematical model of an integer nonlinear multi-objective optimization problem is presented for improving the FT of hardware task graphs, scheduled in partially reconfigurable platforms. Experimental results show the positive impacts of choosing the FT techniques selected by the proposed solution, which is named Pareto-based. Thus, in comparison to nonfault-tolerant designs or other state-of-the-art FT approaches, without increasing makespan, about 850% mean time to failure (MTTF) improvement is achieved and, without degrading reliability, makespan is improved by 25%. In addition, experiments in fault-varying environments have demonstrated that the presented approach outperforms the existing state-of-the-art adaptive FT techniques in terms of both MTTF and makespan
    • …
    corecore