125,562 research outputs found

    On the Design of a Novel Solid Oxide Fuel Cell Combined Cooling, Heating and Power System for UK Residential Needs

    Get PDF
    Combined cooling, heating and power (CCHP) systems have become a topic of increasing research interest especially now that they may offer substantial improvements for conservation of fuel and electrical power in the domestic residential sector. However, only a few of the fuel cell (FC)-based CCHP systems have considered the inclusion of other power sources as part of their design with respect to diverse criteria for system optimisation. Most of the research undertaken thus far has focused on the performance improvement of CCHP systems when operated as a single energy source and has not considered the operation when connected to the electrical power distribution grid or under dynamic load conditions. The aim of this research project is to design a solid oxide fuel cell (SOFC)-based CCHP hybrid system that maximises system efficiency and minimises emissions and system costs in an objective manner with minimal operator and customer intervention. A new system structure has been designed to improve the flexibility of the system such that its functioning is closer to practical applications in both island and grid-connected modes, and still returns optimised performance with no need for system redesign or reconfiguration. A novel combination of grey relationship analysis (GRA) linked to an entropy weighting approach has been developed to evaluate the sizing values of fuel cells, heat exchangers and absorption chillers to improve the technical, economic and environmental system performance and reduce subjectivity and inaccuracy that could be imported through reliance on subjective human judgement. A new algorithm, denoted as the multi-objective particle swarm optimisation (MOPSO)-GRA has been designed to reduce local optimisation problem caused by standard MOPSO algorithms. The proposed system has been verified with published experimental results and comparative analysis has been carried out to verify the advance and the new algorithms. The main conclusion is that the optimum design of the SOFC-based CCHP hybrid system delivers optimised performance in terms of efficiency, operation and through life economy as well as environmental impact that gives a high degree of flexible compatibility within the energy supply environment in the UK

    Combined Use of Sensitivity Analysis and Hybrid Wavelet-PSO- ANFIS to Improve Dynamic Performance of DFIG-Based Wind Generation

    Get PDF
    In the past few decades, increasing growth of wind power plants causes different problems for the power quality in the grid. Normal and transient impacts of these units on the power grid clearly indicate the need to improve the quality of the electricity generated by them in the design of such systems. Improving the efficiency of the large-scale wind system is dependent on the control parameters. The main contribution of this study is to propose a sensitivity analysis approach integrated with a novel hybrid approach combining wavelet transform, particle swarm optimization and an Adaptive-Network-based Fuzzy Inference System (ANFIS) known as Wavelet-ANFIS-PSO to acquire the optimal control of Doubly-Fed Induction Generators (DFIG) based wind generation. In order to mitigate the optimization complexity, sensitivity analysis is offered to identify the Unified Dominate Control Parameters (UDCP) rather than optimization of all parameters. The robustness of the proposed approach in finding optimal parameters, and consequently achieve a high dynamic performance is confirmed on two area power system under different operating conditions

    Potentials and challenges of the fuel cell technology for ship applications. A comprehensive techno-economic and environmental assessment of maritime power system configurations

    Get PDF
    The decarbonization of the global ship traffic is one of the industry’s greatest challenges for the next decades and will likely only be achieved with new, energy-efficient power technologies. To evaluate the performances of such technologies, a system modeling and optimization approach is introduced and tested, covering three elementary topics: shipboard solid oxide fuel cells (SOFCs), the benefits of decentralizing ship power systems, and the assessment of potential future power technologies and synthetic fuels. In the following, the analyses’ motivations, scopes, and derived conclusions are presented. SOFCs are a much-discussed technology with promising efficiency, fuel versatility, and few operating emissions. However, complex processes and high temperature levels inhibit their stand-alone dynamic operation. Therefore, the operability in a hybrid system is investigated, focusing on component configurations and evaluation approach corrections. It is demonstrated that moderate storage support satisfies the requirements for an uninterrupted ship operation. Depending on the load characteristics, energy-intensive and power-intensive storage applications with diverging challenges are identified. The analysis also emphasizes to treat degradation modeling with particular care, since technically optimal and cost-optimal design solutions differ meaningfully when assessing annual expenses. Decentralizing a power system with modular components in accordance with the load demand reduces both grid size and transmission losses, leading to a decrease of investment and operating costs. A cruise-ship-based case study considering variable installation locations and potential component failures is used to quantify these benefits. Transmission costs in a distributed system are reduced meaningfully with and without component failure consideration when compared to a central configuration. Also, minor modifications ensure the component redundancy requirements, resulting in comparably marginal extra expenses. Nowadays, numerous synthetic fuels are seen as candidates for future ship applications in combination with either combustion engines or fuel cells. To drive an ongoing technology discussion, performance indicators for envisioned system configurations are assessed in dependence on mission characteristics and critical price trends. Even if gaseous hydrogen is often considered not suitable for ship applications due to its low volumetric energy density, resulting little operating costs are accountable for its superior performance on short passages. For extended missions, fuel cells operating on methanol or ammonia surpass hydrogen economically

    Modeling and Control for Smart Grid Integration of Solar/Wind Energy Conversion System

    Get PDF
    Performance optimization, system reliability and operational efficiency are key characteristics of smart grid systems. In this paper a novel model of smart grid-connected PV/WT hybrid system is developed. It comprises photovoltaic array, wind turbine, asynchronous (induction) generator, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The dynamic behavior of the proposed model is examined under different operating conditions. Solar irradiance, temperature and wind speed data is gathered from a grid connected, 28.8kW solar power system located in central Manchester. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for smart grid performance optimization

    Hydro/Battery Hybrid Systems for frequency regulation

    Get PDF
    An innovative Hydro/Battery Hybrid System (HBHS), composed of a hydropower plant (HPP) and a Battery Energy Storage System (BESS) is proposed to provide frequency regulation services in the Nordic Power System (NPS). The HBHS is envisioned to have a faster and more efficient response compared to HPPs currently providing these services, whilst retaining their high energy capacity and endurance, thus alleviating stand-alone BESS operation constraints. This Thesis aims to explore the operation and optimization of such a hybrid system in order to make it efficient and economically viable. A power plant perspective is employed, evaluating the impact different control algorithms and parameters have on the HBHS performance. Providing Frequency Containment Reserves for Normal Operation (FCR-N), to the national TSO in Sweden, is defined from technology and market analyses as the use case for the HBHS. The characteristics of HPPs suitable for HBHS implementation are found theoretically, by evaluating HPP operational constraints and regulation mechanisms. With the aim of evaluating the dynamic performance of the proposed HBHS, a frequency regulation model of the NPS is built in MATLAB and Simulink. Two different HBHS architectures are introduced, the Hydro Recharge, in which the BESS is regulating the frequency and the HPP is controlling its state of charge (SoC), and the Frequency Split, in which both elements are regulating the frequency with the HPP additionally compensating for the SoC. The dynamic performance of the units is qualitatively evaluated through existing and proposed FCR-N prequalification tests, prescribed by the TSO and ENTSO-E. Quantitative performance comparison to a benchmark HPP is performed with regards to the estimated HPP regulation wear and tear and BESS degradation during 30-day operation with historical frequency data. The two proposed HBHS architectures demonstrate significant reductions of estimated HPP wear and tear compared to the benchmark unit. Simulations consistently report a 90 % reduction in the number of movements HPP regulation mechanism performs and a more than 50 % decrease in the distance it travels. The BESS lifetime is evaluated at acceptable levels and compared for different architectures. Two different applications are identified, the first being installing the HBHS to enable the HPP to pass FCR-N prequalification tests. The second application is increasing the FCR-N capacity of the HPP by installing the HBHS. The Frequency Split HBHS shows more efficient performance when installed in the first application, as opposed to the Hydro Recharge HBHS, which shows better performance in the second application. Finally, it is concluded that a large-scale implementation of HBHSs would improve the frequency quality in the NPS, linearly decreasing the amount of time outside the normal frequency band with increasing the total installed HBHS power capacity
    • …
    corecore