94 research outputs found

    Automated Systems for Calculating Arteriovenous Ratio in Retinographies : A Scoping Review

    Get PDF
    There is evidence of an association between hypertension and retinal arteriolar narrowing. Manual measurement of retinal vessels comes with additional variability, which can be eliminated using automated software. This scoping review aims to summarize research on automated retinal vessel analysis systems. Searches were performed on Medline, Scopus, and Cochrane to find studies examining automated systems for the diagnosis of retinal vascular alterations caused by hypertension using the following keywords: diagnosis; diagnostic screening programs; image processing, computer-assisted; artificial intelligence; electronic data processing; hypertensive retinopathy; hypertension; retinal vessels; arteriovenous ratio and retinal image analysis. The searches generated 433 articles. Of these, 25 articles published from 2010 to 2022 were included in the review. The retinographies analyzed were extracted from international databases and real scenarios. Automated systems to detect alterations in the retinal vasculature are being introduced into clinical practice for diagnosis in ophthalmology and other medical specialties due to the association of such changes with various diseases. These systems make the classification of hypertensive retinopathy and cardiovascular risk more reliable. They also make it possible for diagnosis to be performed in primary care, thus optimizing ophthalmological visits

    Precision Medicine in Glaucoma: Artificial Intelligence, Biomarkers, Genetics and Redox State

    Get PDF
    Glaucoma is a multifactorial neurodegenerative illness requiring early diagnosis and strict monitoring of the disease progression. Current exams for diagnosis and prognosis are based on clinical examination, intraocular pressure (IOP) measurements, visual field tests, and optical coherence tomography (OCT). In this scenario, there is a critical unmet demand for glaucoma-related biomarkers to enhance clinical testing for early diagnosis and tracking of the disease’s development. The introduction of validated biomarkers would allow for prompt intervention in the clinic to help with prognosis prediction and treatment response monitoring. This review aims to report the latest acquisitions on biomarkers in glaucoma, from imaging analysis to genetics and metabolic markers

    Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice

    Get PDF
    Purpose: This concise review aims to explore the potential for the clinical implementation of artificial intelligence (AI) strategies for detecting glaucoma and monitoring glaucoma progression. / Methods: Nonsystematic literature review using the search combinations "Artificial Intelligence," "Deep Learning," "Machine Learning," "Neural Networks," "Bayesian Networks," "Glaucoma Diagnosis," and "Glaucoma Progression." Information on sensitivity and specificity regarding glaucoma diagnosis and progression analysis as well as methodological details were extracted. / Results: Numerous AI strategies provide promising levels of specificity and sensitivity for structural (e.g. optical coherence tomography [OCT] imaging, fundus photography) and functional (visual field [VF] testing) test modalities used for the detection of glaucoma. Area under receiver operating curve (AROC) values of > 0.90 were achieved with every modality. Combining structural and functional inputs has been shown to even more improve the diagnostic ability. Regarding glaucoma progression, AI strategies can detect progression earlier than conventional methods or potentially from one single VF test. / Conclusions: AI algorithms applied to fundus photographs for screening purposes may provide good results using a simple and widely accessible test. However, for patients who are likely to have glaucoma more sophisticated methods should be used including data from OCT and perimetry. Outputs may serve as an adjunct to assist clinical decision making, whereas also enhancing the efficiency, productivity, and quality of the delivery of glaucoma care. Patients with diagnosed glaucoma may benefit from future algorithms to evaluate their risk of progression. Challenges are yet to be overcome, including the external validity of AI strategies, a move from a "black box" toward "explainable AI," and likely regulatory hurdles. However, it is clear that AI can enhance the role of specialist clinicians and will inevitably shape the future of the delivery of glaucoma care to the next generation. / Translational Relevance: The promising levels of diagnostic accuracy reported by AI strategies across the modalities used in clinical practice for glaucoma detection can pave the way for the development of reliable models appropriate for their translation into clinical practice. Future incorporation of AI into healthcare models may help address the current limitations of access and timely management of patients with glaucoma across the world

    Improving Prediction Accuracy of Breast Cancer Survivability and Diabetes Diagnosis via RBF Networks trained with EKF models

    Get PDF
    The continued reliance on machine learning algorithms and robotic devices in the medical and engineering practices has prompted the need for the accuracy prediction of such devices. It has attracted many researchers in recent years and has led to the development of various ensembles and standalone models to address prediction accuracy issues. This study was carried out to investigate the integration of EKF, RBF networks and AdaBoost as an ensemble model to improve prediction accuracy. In this study we proposed a model termed EKF-RBFN-ADABOOST

    Dynamic Task Migration for Enhanced Load Balancing in Cloud Computing using K-means Clustering and Ant Colony Optimization

    Get PDF
    Cloud computing efficiently allocates resources, and timely execution of user tasks is pivotal for ensuring seamless service delivery. Central to this endeavour is the dynamic orchestration of task scheduling and migration, which collectively contribute to load balancing within virtual machines (VMs). Load balancing is a cornerstone, empowering clouds to fulfill user requirements promptly. To facilitate the migration of tasks, we propose a novel method that exploits the synergistic potential of K-means clustering and Ant Colony Optimization (ACO). Our approach aims to maximize the cloud ecosystem by improving several critical factors, such as the system's make time, resource utilization efficiency, and workload imbalance mitigation. The core objective of our work revolves around the reduction of makespan, a metric directly tied to the overall system performance. By strategically employing K-means clustering, we effectively group tasks with similar attributes, enabling the identification of prime candidates for migration. Subsequently, the ACO algorithm takes the reins, orchestrating the migration process with an inherent focus on achieving global optimization. The multifaceted benefits of our approach are quantitatively assessed through comprehensive comparisons with established algorithms, namely Round Robin (RR), First-Come-First-Serve (FCFS), Shortest Job First (SJF), and a genetic load balancing algorithm. To facilitate this evaluation, we harness the capabilities of the CloudSim simulation tool, which provides a platform for realistic and accurate performance analysis. Our research enhances cloud computing paradigms by harmonizing task migration with innovative optimization techniques. The proposed approach demonstrates its prowess in harmonizing diverse goals: reducing makespan, elevating resource utilization efficiency, and attenuating the degree of workload imbalance. These outcomes collectively pave the way for a more responsive and dependable cloud infrastructure primed to cater to user needs with heightened efficacy. Our study delves into the intricate domain of cloud-based task scheduling and migration. By synergizing K-means clustering and ACO algorithms, we introduce a dynamic methodology that refines cloud resource management and bolsters the quintessential facet of load balancing. Through rigorous comparisons and meticulous analysis, we underscore the superior attributes of our approach, showcasing its potential to reshape the landscape of cloud computing optimization

    Methods to Improve the Prediction Accuracy and Performance of Ensemble Models

    Get PDF
    The application of ensemble predictive models has been an important research area in predicting medical diagnostics, engineering diagnostics, and other related smart devices and related technologies. Most of the current predictive models are complex and not reliable despite numerous efforts in the past by the research community. The performance accuracy of the predictive models have not always been realised due to many factors such as complexity and class imbalance. Therefore there is a need to improve the predictive accuracy of current ensemble models and to enhance their applications and reliability and non-visual predictive tools. The research work presented in this thesis has adopted a pragmatic phased approach to propose and develop new ensemble models using multiple methods and validated the methods through rigorous testing and implementation in different phases. The first phase comprises of empirical investigations on standalone and ensemble algorithms that were carried out to ascertain their performance effects on complexity and simplicity of the classifiers. The second phase comprises of an improved ensemble model based on the integration of Extended Kalman Filter (EKF), Radial Basis Function Network (RBFN) and AdaBoost algorithms. The third phase comprises of an extended model based on early stop concepts, AdaBoost algorithm, and statistical performance of the training samples to minimize overfitting performance of the proposed model. The fourth phase comprises of an enhanced analytical multivariate logistic regression predictive model developed to minimize the complexity and improve prediction accuracy of logistic regression model. To facilitate the practical application of the proposed models; an ensemble non-invasive analytical tool is proposed and developed. The tool links the gap between theoretical concepts and practical application of theories to predict breast cancer survivability. The empirical findings suggested that: (1) increasing the complexity and topology of algorithms does not necessarily lead to a better algorithmic performance, (2) boosting by resampling performs slightly better than boosting by reweighting, (3) the prediction accuracy of the proposed ensemble EKF-RBFN-AdaBoost model performed better than several established ensemble models, (4) the proposed early stopped model converges faster and minimizes overfitting better compare with other models, (5) the proposed multivariate logistic regression concept minimizes the complexity models (6) the performance of the proposed analytical non-invasive tool performed comparatively better than many of the benchmark analytical tools used in predicting breast cancers and diabetics ailments. The research contributions to ensemble practice are: (1) the integration and development of EKF, RBFN and AdaBoost algorithms as an ensemble model, (2) the development and validation of ensemble model based on early stop concepts, AdaBoost, and statistical concepts of the training samples, (3) the development and validation of predictive logistic regression model based on breast cancer, and (4) the development and validation of a non-invasive breast cancer analytic tools based on the proposed and developed predictive models in this thesis. To validate prediction accuracy of ensemble models, in this thesis the proposed models were applied in modelling breast cancer survivability and diabetics’ diagnostic tasks. In comparison with other established models the simulation results of the models showed improved predictive accuracy. The research outlines the benefits of the proposed models, whilst proposes new directions for future work that could further extend and improve the proposed models discussed in this thesis

    Machine learning methods for the characterization and classification of complex data

    Get PDF
    This thesis work presents novel methods for the analysis and classification of medical images and, more generally, complex data. First, an unsupervised machine learning method is proposed to order anterior chamber OCT (Optical Coherence Tomography) images according to a patient's risk of developing angle-closure glaucoma. In a second study, two outlier finding techniques are proposed to improve the results of above mentioned machine learning algorithm, we also show that they are applicable to a wide variety of data, including fraud detection in credit card transactions. In a third study, the topology of the vascular network of the retina, considering it a complex tree-like network is analyzed and we show that structural differences reveal the presence of glaucoma and diabetic retinopathy. In a fourth study we use a model of a laser with optical injection that presents extreme events in its intensity time-series to evaluate machine learning methods to forecast such extreme events.El presente trabajo de tesis desarrolla nuevos métodos para el análisis y clasificación de imágenes médicas y datos complejos en general. Primero, proponemos un método de aprendizaje automático sin supervisión que ordena imágenes OCT (tomografía de coherencia óptica) de la cámara anterior del ojo en función del grado de riesgo del paciente de padecer glaucoma de ángulo cerrado. Luego, desarrollamos dos métodos de detección automática de anomalías que utilizamos para mejorar los resultados del algoritmo anterior, pero que su aplicabilidad va mucho más allá, siendo útil, incluso, para la detección automática de fraudes en transacciones de tarjetas de crédito. Mostramos también, cómo al analizar la topología de la red vascular de la retina considerándola una red compleja, podemos detectar la presencia de glaucoma y de retinopatía diabética a través de diferencias estructurales. Estudiamos también un modelo de un láser con inyección óptica que presenta eventos extremos en la serie temporal de intensidad para evaluar diferentes métodos de aprendizaje automático para predecir dichos eventos extremos.Aquesta tesi desenvolupa nous mètodes per a l’anàlisi i la classificació d’imatges mèdiques i dades complexes. Hem proposat, primer, un mètode d’aprenentatge automàtic sense supervisió que ordena imatges OCT (tomografia de coherència òptica) de la cambra anterior de l’ull en funció del grau de risc del pacient de patir glaucoma d’angle tancat. Després, hem desenvolupat dos mètodes de detecció automàtica d’anomalies que hem utilitzat per millorar els resultats de l’algoritme anterior, però que la seva aplicabilitat va molt més enllà, sent útil, fins i tot, per a la detecció automàtica de fraus en transaccions de targetes de crèdit. Mostrem també, com en analitzar la topologia de la xarxa vascular de la retina considerant-la una xarxa complexa, podem detectar la presència de glaucoma i de retinopatia diabètica a través de diferències estructurals. Finalment, hem estudiat un làser amb injecció òptica, el qual presenta esdeveniments extrems en la sèrie temporal d’intensitat. Hem avaluat diferents mètodes per tal de predir-los.Postprint (published version

    Machine learning assisted optimization with applications to diesel engine optimization with the particle swarm optimization algorithm

    Get PDF
    A novel approach to incorporating Machine Learning into optimization routines is presented. An approach which combines the benefits of ML, optimization, and meta-model searching is developed and tested on a multi-modal test problem; a modified Rastragin\u27s function. An enhanced Particle Swarm Optimization method was derived from the initial testing. Optimization of a diesel engine was carried out using the modified algorithm demonstrating an improvement of 83% compared with the unmodified PSO algorithm. Additionally, an approach to enhancing the training of ML models by leveraging Virtual Sensing as an alternative to standard multi-layer neural networks is presented. Substantial gains were made in the prediction of Particulate matter, reducing the MMSE by 50% and improving the correlation R^2 from 0.84 to 0.98. Improvements were made in models of PM, NOx, HC, CO, and Fuel Consumption using the method, while training times and convergence reliability were simultaneously improved over the traditional approach

    American Option Pricing Using Computational Intelligence Methods

    Get PDF
    Master of Science in Engineering - EngineeringAn option is the right to buy or sell an underlying asset at a future date by fixing the price now. The field of option pricing produces a challenge because of the complexity with pricing American styled options which cannot be done by the Black-Scholes equations. Neural Networks and Machine Learning techniques are predictors based on past data and it is intuitive to believe that they can model American options as they are non-linear instruments. Call option data on the South African All Share Index (ALSI) was used for testing of the techniques. These two different techniques were compared. What was also done was the comparison of Bayesian techniques applied to both the techniques. What this provided was confidence levels for the predictions. The investigations showed that Machine Learning techniques out-performed Neural Networks. The investigations also showed that there is scope for work to be done to improve the model
    • …
    corecore