356 research outputs found

    Constrained RS coding for Low Peak to Average Power Ratio in FBMC -- OQAM Systems

    Full text link
    Multi-carrier modulation techniques have now become a standard in many communication protocols. Filter bank based multi-carrier (FBMC) generation techniques have been discussed in the literature as a means for overcoming the shortcomings of IFFT/FFT based OFDM system. The Peak to Average Power Ratio (PAPR) is a problem faced by all multi-carrier techniques. This paper discusses the methods for reducing PAPR in a FBMC system while maintaining acceptable Bit Error Rate (BER). A new PAPR minimizing scheme called Constrained Reed Solomon (CRS) coding is proposed. The hybrid techniques using coding and companding are tested for different channel models and is found to yield promising results.Comment: 6 pages,6 Figures, Journal of Electrical and Electronics Engineerin

    Evolution of millimeter-wave communications toward next generation in wireless technologies

    Get PDF
    Next generation in wireless communication systems being deployed in the world, 5G/6G mobile and wireless communication technologies has been widely studied. This work clarifies that Millimeter-Wave (mm-Wave) is in its early stages and will be driven by consumers who keep on desire higher information rates for the consumption of media. Millimeter-Wave innovation represents for next generation cellular technology and includes a wide range of advanced features which make next innovation most dominant technology in near future, these abilities incorporate high achievable information rates in addition to lower delays and constant connectivity on wireless devices

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    New scheme for PAPR reduction in FBMC-OQAM systems based on combining TR and deep clipping techniques

    Get PDF
    Filter bank multi-carrier with offset quadrature amplitude modulation (FBMC-OQAM) system is a very efficient multicarrier modulation technique for 5G, but it suffers as all multicarriers designs from large peak-to-average power ratio (PAPR). Tone reservation (TR) is a method designed to solve this problem by reserving several subcarriers called tones in the frequency domain to generate a cancellation signal in the time domain to eliminate high peaks. In this paper, we suggest a serial combination of tone reservation (TR) method with an enhanced version of clipping called deep clipping (DC) method (TR&DC) to enhance the peaks (PAPR) mitigation in FBMC-OQAM signal model without significantly impacting the quality of transmission. Numerical results and analysis show that the new TR&DC approach allows better overall performance and offers remarkable gain in term of PAPR mitigation than the TR method, with similar BER performance to TR over additive white gaussian noise channel and Rapp HPA model

    A Novel PAPR Reduction in Filter Bank Multi-Carrier (FBMC) with Offset Quadrature Amplitude Modulation (OQAM) Based VLC Systems

    Get PDF
    The peak to average power ratio (PAPR) is one of the major problem with multicarrier-based systems. Due to its improved spectral efficiency and decreased PAPR, Filter Bank Multicarrier (FBMC) has recently become an effective alternative to the orthogonal multiplexing division (OFDM). For filter bank multicarrier communication/offset quadrature amplitude modulation-Visible light communication (FBMC/OQAM-VLC) systems is proposed a PAPR reduction technique. The suggested approach overlaps the proposed FBMC/OQAM-based VLC data signal with the existing signals. Non-redundant signals and data signals do not overlap in the frequency domain because data signals are scattered on odd subcarriers whereas built signals use even subcarriers. To reduce the effects of large-amplitude signal reduction, the suggested technique converts negative signals into positive signals rather than clipping them off as in conventional FBMC-based VLC systems. The PAPR reduction and bit error rate (BER) are realized using a scaling factor in the transformed signals. Complementary cumulative distribution function(CCDF) and BER are used to calculate the performance of the proposed approach. The presented study found that FBMC/OQAM-VLC systems to achieve a good trade-off between PAPR reduction and BER

    Per Sub-band Tone Reservation scheme for Universal Filtered Multi-Carrier signal

    Get PDF
    Fifth generation (5G) applications like Internet of Things (IoT), Enhanced Mobile Broadband (eMBB), Cognitive Radios (CR), Vehicle to Vehicle (V2V) and Machine to Machine (M2M) communication put new demands on the network in terms of low latency, ultra-reliable communication and efficiency when transmitting very small bursts. One new contender that makes its appearance recently is the Universal Filtered MultiCarrier (UFMC). UFMC is a potential candidate to meet the requirements of 5G upcoming applications. This related waveform encounters the peak-to-average power ratio (PAPR) issue arising from the usage of multi-carrier transmission. In this investigation, two PAPR reduction techniques, called Per Subband Tone Reservation (PSTR) scheme to alleviate PAPR in UFMC systems are suggested. The first one is a pre-filtering PSTR scheme that uses the least squares approximation (LSA) algorithm to calculate the optimization factor(µ) and the second one is a post-filtering method. The concept of this proposal lies on the use of peaks reductions Tone to carry the correctional signal that reduces the high peaks of each sub-band individually. To shed light on UFMC as a potential waveform for 5G upcoming application, a comparison with OFDM modulation is done

    Doubly Orthogonal Wavelet Packets for Multi-Users Indoor Visible Light Communication Systems

    Get PDF
    Visible Light Communication (VLC) is a data communication technology that modulates the intensity of the light to transmit the information mostly by means of Light Emitting Diodes (LEDs). The data rate is mainly throttled by the limited bandwidth of the LEDs. To combat, Multi-carrier Code Division Multiple Access (MC-CDMA) is a favorable technique for achieving higher data rates along with reduced Inter-Symbol Interference (ISI) and easy access to multi-users at the cost of slightly reduced compromised spectral efficiency and Multiple Access Interference (MAI). In this article, a multi-user VLC system is designed using a Discrete Wavelet Transform (DWT) that eradicates the use of cyclic prefix due to the good orthogonality and time-frequency localization properties of wavelets. Moreover, the design also comprises suitable signature codes, which are generated by employing double orthogonality depending upon Walsh codes and Wavelet Packets. The proposed multi-user system is simulated in MATLAB software and its overall performance is assessed using line-of-sight (LoS) and non-line-of-sight (NLoS) configurations. Furthermore, two sub-optimum multi-users detection schemes such as zero forcing (ZF) and minimum-mean-square-error (MMSE) are also used at the receiver. The simulated results illustrate that the doubly orthogonal signature waveform-based DWT-MC-CDMA with MMSE detection scheme outperforms the Walsh code-based multi-user system

    Single- versus Multi-Carrier Terahertz-Band Communications: A Comparative Study

    Full text link
    The prospects of utilizing single-carrier (SC) and multi-carrier (MC) waveforms in future terahertz (THz)-band communication systems remain unresolved. On the one hand, the limited multi-path components at high frequencies result in frequency-flat channels that favor low-complexity wideband SC systems. On the other hand, frequency-dependent molecular absorption and transceiver characteristics and the existence of multi-path components in indoor sub-THz systems can still result in frequency-selective channels, favoring off-the-shelf MC schemes such as orthogonal frequency-division multiplexing (OFDM). Variations of SC/MC designs result in different THz spectrum utilization, but spectral efficiency is not the primary concern with substantial available bandwidths; baseband complexity, power efficiency, and hardware impairment constraints are predominant. This paper presents a comprehensive study of SC/MC modulations for THz communications, utilizing an accurate wideband THz channel model and highlighting the various performance and complexity trade-offs of the candidate schemes. Simulations demonstrate that discrete-Fourier-transform spread orthogonal time-frequency space (DFT-s-OTFS) achieves a lower peak-to-average power ratio (PAPR) than OFDM and OTFS and enhances immunity to THz impairments and Doppler spreads, but at an increased complexity cost. Moreover, DFT-s-OFDM is a promising candidate that increases robustness to THz impairments and phase noise (PHN) at a low PAPR and overall complexity.Comment: 18 pages, 12 figures, journa

    Novel Selective Mapping with Oppositional Hosted Cuckoo Optimization Algorithm for PAPR Reduction in 5G UFMC Systems

    Get PDF
    In recent times, there is a continuous requirement of achieving high data rates owing to an increase in the number of devices and significant demand for various services with maximum reliability and minimum delay. It results in the development of fifth generation (5G) to offer better services with enhanced data rate. Recently, a major alternative to OFDM technology for 5G networks called universal filtered multi-carrier (UFMC) is presented where every individual sub-band is filtered that reduces the OOB radiation and eliminates guard band. But high peak-to-average power ratio (PAPR) is a crucial issue which arises from the utilization of several subcarriers to generate the time domain transmission signal. For resolving this issue, this paper presents a novel selective mapping with oppositional hosted cuckoo optimization (SM-OHOCO) algorithm for PAPR reduction in 5G UFMC systems. In the SM-OHOCO algorithm, rather than the generation of several random phase sequences, SM-OHOCO algorithm is performed iteratively to attain a better solution with few searching rounds, showing the novelty of the work. As the optimization of phase sequence in the SLM technique is considered as an NP hard optimization problem, the OHOCO algorithm is applied, which is derived by incorporating the concepts of the HOCO algorithm with oppositional based learning (OBL) strategy. To validate the effective performance of the proposed SM-OHOCO algorithm, an extensive experimental analysis is performed to highlight the improved performance in 5G networks. The resultant values pointed out the superior outcome of the proposed SM-OHOCO algorithm over the other existing methods in terms of distinct measure
    corecore