3,248 research outputs found

    Exploiting Geographical and Temporal Locality to Boost Search Efficiency in Peer-to-Peer Systems

    Get PDF
    As a hot research topic, many search algorithms have been presented and studied for unstructured peer-to-peer (P2P) systems during the past few years. Unfortunately, current approaches either cannot yield good lookup performance, or incur high search cost and system maintenance overhead. The poor search efficiency of these approaches may seriously limit the scalability of current unstructured P2P systems. In this paper, we propose to exploit two-dimensional locality to improve P2P system search efficiency. We present a locality-aware P2P system architecture called Foreseer, which explicitly exploits geographical locality and temporal locality by constructing a neighbor overlay and a friend overlay, respectively. Each peer in Foreseer maintains a small number of neighbors and friends along with their content filters used as distributed indices. By combining the advantages of distributed indices and the utilization of two-dimensional locality, our scheme significantly boosts P2P search efficiency while introducing only modest overhead. In addition, several alternative forwarding policies of Foreseer search algorithm are studied in depth on how to fully exploit the two-dimensional locality

    Peer-to-Peer Networks and Computation: Current Trends and Future Perspectives

    Get PDF
    This research papers examines the state-of-the-art in the area of P2P networks/computation. It attempts to identify the challenges that confront the community of P2P researchers and developers, which need to be addressed before the potential of P2P-based systems, can be effectively realized beyond content distribution and file-sharing applications to build real-world, intelligent and commercial software systems. Future perspectives and some thoughts on the evolution of P2P-based systems are also provided

    Building a privacy-preserving semantic overlay for Peer-to-Peer networks

    Get PDF
    Searching a Peer-to-Peer (P2P) network without using a central index has been widely investigated but proved to be very difficult. Various strategies have been proposed, however no practical solution to date also addresses privacy concerns. By clustering peers which have similar interests, a semantic overlay provides a method for achieving scalable search. Traditionally, in order to find similar peers, a peer is required to fully expose its preferences for items or content, therefore disclosing this private information. However, in a hostile environment, such as a P2P system, a peer can not know the true identity or intentions of fellow peers. In this paper, we propose two protocols for building a semantic overlay in a privacy-preserving manner by modifying existing solutions to the Private Set Intersection (PSI) problem. Peers in our overlay compute their similarity to other peers in the encrypted domain, allowing them to find similar peers. Using homomorphic encryption, peers can carrying out computations on encrypted values, without needing to decrypt them first. We propose two protocols, one based on the inner product of vectors, the other on multivariate polynomial evaluation, which are able to compute a similarity value between two peers. Both protocols are implemented on top of an existing P2P platform and are designed for actual deployment. Using a supercomputer and a dataset extracted from a real world instance of a semantic overlay, we emulate our protocols in a network consisting of a thousand peers. Finally, we show the actual computational and bandwidth usage of the protocols as recorded during those experiments
    • …
    corecore