16 research outputs found

    Hybrid POMDP-BDI: An Agent Architecture with Online Stochastic Planning and Desires with Changing Intensity Levels

    Get PDF
    Partially observable Markov decision processes (POMDPs) and the belief-desire-intention (BDI) framework have several complimentary strengths. We propose an agent architecture which combines these two powerful approaches to capitalize on their strengths. Our architecture introduces the notion of intensity of the desire for a goal’s achievement. We also define an update rule for goals’ desire levels. When to select a new goal to focus on is also defined. To verify that the proposed architecture works, experiments were run with an agent based on the architecture, in a domain where multiple goals must continually be achieved. The results show that (i) while the agent is pursuing goals, it can concurrently perform rewarding actions not directly related to its goals, (ii) the trade-off between goals and preferences can be set effectively and (iii) goals and preferences can be satisfied even while dealing with stochastic actions and perceptions. We believe that the proposed architecture furthers the theory of high-level autonomous agent reasoning

    A hybrid POMDP-BDI agent architecture with online stochastic planning and plan caching

    Get PDF
    This article presents an agent architecture for controlling an autonomous agent in stochastic, noisy environments. The architecture combines the partially observable Markov decision process (POMDP) model with the belief-desire-intention (BDI) framework. The Hybrid POMDP-BDI agent architecture takes the best features from the two approaches, that is, the online generation of reward-maximizing courses of action from POMDP theory, and sophisticated multiple goal management from BDI theory. We introduce the advances made since the introduction of the basic architecture, including (i) the ability to pursue and manage multiple goals simultaneously and (ii) a plan library for storing pre-written plans and for storing recently generated plans for future reuse. A version of the architecture is implemented and is evaluated in a simulated environment. The results of the experiments show that the improved hybrid architecture outperforms the standard POMDP architecture and the previous basic hybrid architecture for both processing speed and effectiveness of the agent in reaching its goals

    Deception

    Get PDF

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019

    Agents and Robots for Reliable Engineered Autonomy

    Get PDF
    This book contains the contributions of the Special Issue entitled "Agents and Robots for Reliable Engineered Autonomy". The Special Issue was based on the successful first edition of the "Workshop on Agents and Robots for reliable Engineered Autonomy" (AREA 2020), co-located with the 24th European Conference on Artificial Intelligence (ECAI 2020). The aim was to bring together researchers from autonomous agents, as well as software engineering and robotics communities, as combining knowledge from these three research areas may lead to innovative approaches that solve complex problems related to the verification and validation of autonomous robotic systems

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications
    corecore