2,556 research outputs found

    A CNN based hybrid approach towards automatic image registration

    Get PDF
    Image registration is a key component of spatial analyses that involve different data sets of the same area. Automatic approaches in this domain have witnessed the application of several intelligent methodologies over the past decade; however accuracy of these approaches have been limited due to the inability to properly model shape as well as contextual information. In this paper, we investigate the possibility of an evolutionary computing based framework towards automatic image registration. Cellular Neural Network has been found to be effective in improving feature matching as well as resampling stages of registration, and complexity of the approach has been considerably reduced using corset optimization. CNN-prolog based approach has been adopted to dynamically use spectral and spatial information for representing contextual knowledge. The salient features of this work are feature point optimisation, adaptive resampling and intelligent object modelling. Investigations over various satellite images revealed that considerable success has been achieved with the procedure. Methodology also illustrated to be effective in providing intelligent interpretation and adaptive resampling

    Land-Cover and Land-Use Study Using Genetic Algorithms, Petri Nets, and Cellular Automata

    Get PDF
    Recent research techniques, such as genetic algorithm (GA), Petri net (PN), and cellular automata (CA) have been applied in a number of studies. However, their capability and performance in land-cover land-use (LCLU) classification, change detection, and predictive modeling have not been well understood. This study seeks to address the following questions: 1) How do genetic parameters impact the accuracy of GA-based LCLU classification; 2) How do image parameters impact the accuracy of GA-based LCLU classification; 3) Is GA-based LCLU classification more accurate than the maximum likelihood classifier (MLC), iterative self-organizing data analysis technique (ISODATA), and the hybrid approach; 4) How do genetic parameters impact Petri Net-based LCLU change detection; and 5) How do cellular automata components impact the accuracy of LCLU predictive modeling. The study area, namely the Tickfaw River watershed (711mi²), is located in southeast Louisiana and southwest Mississippi. The major datasets include time-series Landsat TM / ETM images and Digital Orthophoto Quarter Quadrangles (DOQQ’s). LCLU classification was conducted by using the GA, MLC, ISODATA, and Hybrid approach. The LCLU change was modeled by using genetic PN-based process mining technique. The process models were interpreted and input to a CA for predicting future LCLU. The major findings include: 1) GA-based LCLU classification is more accurate than the traditional approaches; 2) When genetic parameters, image parameters, or CA components are configured improperly, the accuracy of LCLU classification, the coverage of LCLU change process model, and/or the accuracy of LCLU predictive modeling will be low; 3) For GA-based LCLU classification, the recommended configuration of genetic / image parameters is generation 2000-5000, population 1000, crossover rate 69%-99%, mutation rate 0.1%-0.5%, generation gap 25%-50%, data layers 16-20, training / testing data size 10000-20000 / 5000-10000, and spatial resolution 30m-60m; 4) For genetic Petri nets-based LCLU change detection, the recommended configuration of genetic parameters is generation 500, population 300, crossover rate 59%, mutation rate 5%, and elitism rate 4%; and 5) For CA-based LCLU predictive modeling, the recommended configuration of CA components is space 6025 * 12993, state 2, von Neumann neighborhood 3 * 3, time step 2-3 years, and optimized transition rules

    An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map Sources

    Get PDF
    Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period. In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection. To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given

    Investigating biocomplexity through the agent-based paradigm.

    Get PDF
    Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines--or agents--to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Urban growth models and calibration methods: a case study of Athens, Greece

    Get PDF
    A number of urban growth models have been developed to simulate and predict urban expansion. Most of these models have common objectives; however, they differ in terms of calibration and execution methodologies. GIS spatial computations and data processing capabilities have given us the ability to draw more effective simulation results for increasingly complex scenarios. In this paper, we apply and evaluate a methodology to create a hybrid cellular-automaton- (CA) and agent-based model (ABM) using raster and vector data from the Urban Atlas project as well as other open data sources. We also present and evaluate three different methods to calibrate and evaluate the model. The model has been applied and evaluated by a case study on the city of Athens, Greece. However, it has been designed and developed with the aim of being applicable to any city available in the Urban Atlas project
    • …
    corecore