2,673 research outputs found

    Situation Awareness for Smart Distribution Systems

    Get PDF
    In recent years, the global climate has become variable due to intensification of the greenhouse effect, and natural disasters are frequently occurring, which poses challenges to the situation awareness of intelligent distribution networks. Aside from the continuous grid connection of distributed generation, energy storage and new energy generation not only reduces the power supply pressure of distribution network to a certain extent but also brings new consumption pressure and load impact. Situation awareness is a technology based on the overall dynamic insight of environment and covering perception, understanding, and prediction. Such means have been widely used in security, intelligence, justice, intelligent transportation, and other fields and gradually become the research direction of digitization and informatization in the future. We hope this Special Issue represents a useful contribution. We present 10 interesting papers that cover a wide range of topics all focused on problems and solutions related to situation awareness for smart distribution systems. We sincerely hope the papers included in this Special Issue will inspire more researchers to further develop situation awareness for smart distribution systems. We strongly believe that there is a need for more work to be carried out, and we hope this issue provides a useful open-access platform for the dissemination of new ideas

    Deep Learning in Energy Modeling: Application in Smart Buildings With Distributed Energy Generation

    Get PDF
    Buildings are responsible for 33% of final energy consumption, and 40% of direct and indirect CO2 emissions globally. While energy consumption is steadily rising globally, managing building energy utilization by on-site renewable energy generation can help responding to this demand. This paper proposes a deep learning method based on a discrete wavelet transformation and long short-term memory method (DWT-LSTM) and a scheduling framework for the integrated modelling and management of energy demand and supply for buildings. This method analyzes several factors including electricity price, uncertainty in climatic factors, availability of renewable energy sources (wind and solar), energy consumption patterns in buildings, and the non-linear relationships between these parameters on hourly, daily, weekly and monthly intervals. The method enables monitoring and controlling renewable energy generation, the share of energy imports from the grid, employment of saving strategy based on the user priority list, and energy storage management to minimize the reliance on the grid and electricity cost, especially during the peak hours. The results demonstrate that the proposed method can forecast building energy demand and energy supply with a high level of accuracy, showing a 3.63-8.57% error range in hourly data prediction for one month ahead. The combination of the deep learning forecasting, energy storage, and scheduling algorithm enables reducing annual energy import from the grid by 84%, which offers electricity cost savings by 87%. Finally, two smart active buildings configurations are financially analyzed for the next thirty years. Based on the results, the proposed smart building with solar Photo-Voltaic (PV), wind turbine, inverter, and 40.5 kWh energy storage has a financial breakeven point after 9 years with wind turbine and 8 years without it. This implies that implementing wind turbines in the proposed building is not financially beneficial.Peer reviewe

    State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems

    Get PDF
    The integration of wind energy into power systems has intensified as a result of the urgency for global energy transition. This requires more accurate forecasting techniques that can capture the variability of the wind resource to achieve better operative performance of power systems. This paper presents an exhaustive review of the state-of-the-art of wind-speed and -power forecasting models for wind turbines located in different segments of power systems, i.e., in large wind farms, distributed generation, microgrids, and micro-wind turbines installed in residences and buildings. This review covers forecasting models based on statistical and physical, artificial intelligence, and hybrid methods, with deterministic or probabilistic approaches. The literature review is carried out through a bibliometric analysis using VOSviewer and Pajek software. A discussion of the results is carried out, taking as the main approach the forecast time horizon of the models to identify their applications. The trends indicate a predominance of hybrid forecast models for the analysis of power systems, especially for those with high penetration of wind power. Finally, it is determined that most of the papers analyzed belong to the very short-term horizon, which indicates that the interest of researchers is in this time horizon

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy

    Manufacturing System Energy Modeling and Optimization

    Get PDF
    World energy consumption has continued increasing in recent years. As a major consumer, industrial activities uses about one third of the energy over the last few decades. In the US, automotive manufacturing plants spends millions of dollars on energy. Meanwhile, due to the high energy price and the high correlation between the energy and environment, manufacturers are facing competing pressure from profit, long term brand image, and environmental policies. Thus, it is critical to understand the energy usage and optimize the operation to achieve the best overall objective. This research will establish systematic energy models, forecast energy demands, and optimize the supply systems in manufacturing plants. A combined temporal and organizational framework for manufacturing is studied to drive energy model establishment. Guided by the framework, an automotive manufacturing plant in the post-process phase is used to implement the systematic modeling approach. By comparing with current studies, the systematic approach is shown to be advantageous in terms of amount of information included, feasibility to be applied, ability to identify the potential conservations, and accuracy. This systematic approach also identifies key influential variables for time series analysis. Comparing with traditional time series models, the models informed by manufacturing features are proved to be more accurate in forecasting and more robust to sudden changes. The 16 step-ahead forecast MSE (mean square error) is improved from 16% to 1.54%. In addition, the time series analysis also detects the increasing trend, weekly, and annual seasonality in the energy consumption. Energy demand forecasting is essential to production management and supply stability. Manufacturing plant on-site energy conversion and transmission systems can schedule the optimal strategy according the demand forecasting and optimization criteria. This research shows that the criteria of energy, monetary cost, and environmental emission are three main optimization criteria that are inconsistent in optimal operations. In the studied case, comparing to cost-oriented optimization, energy optimal operation costs 35% more to run the on-site supply system. While the monetary cost optimal operation uses 17% more energy than the energy-oriented operation. Therefore, the research shows that the optimal operation strategy does not only depends on the high/low level energy price and demand, but also relies on decision makers’ preferences. It provides not a point solution to energy use in manufacturing, but instead valuable information for decision making. This research complements the current knowledge gaps in systematic modeling of manufacturing energy use, consumption forecasting, and supply optimization. It increases the understanding of energy usage in the manufacturing system and improves the awareness of the importance of energy conservation and environmental protection

    Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The electricity consumption forecasting problem is especially important for policy making in developing region. To properly formulate policies, it is necessary to have reliable forecasts. Electricity consumption forecasting is influenced by some factors, such as economic, population and so on. Considering all factors is a difficult task since it requires much detailed study in which many factors significantly influence on electricity forecasting whereas too many data are unavailable. Grey convex relational analysis is used to describe the relationship between the electricity consumption and its related factors. A novel multi-variable grey forecasting model which considered the total population is developed to forecast the electricity consumption in Shandong Province. The GMC(1,N) model with fractional order accumulation is optimized by changing the order number and the effectiveness of the first pair of original data by the model is proven. The results of practical numerical examples demonstrate that the model provides remarkable prediction performances compared with the traditional grey forecasting model. The forecasted results showed that the increase of electricity consumption will speed up in Shandong Province

    Planning and Operation of Hybrid Renewable Energy Systems

    Get PDF

    Balancing of intermittent renewable generation in smart grid

    Get PDF
    This thesis researches a novel electricity demand response method and renewable energy management technique. It demonstrated the use of flow batteries and residential hot water heaters to balance wind power deviation from plan. The electricity supply-demand balancing problem becomes increasingly more difficult. A large portion of complexity to this problem comes from the fact that most renewable energy sources are inherently hard to control and intermittent. The increasing amount of renewable energy generation makes scientists research new supply-demand balancing possibilities to adapt for the changes. In this research wind power data was used in most cases to represent the supply side. The focus is on the actual generation deviation from plan, i.e. forecasting error. On the other hand, the methods developed in this thesis are not limited to wind power balancing. Two major approaches were analysed - heating ventilation and air conditioning system control (mainly focused on, but not limited to, residential hot water heaters) and hybrid power system comprising of thermal and hydro power plants together with utility scale flow batteries. These represent the consumption side or the demand response mechanism. The first approach focused on modelling the behaviour of residential end users. Artificial intelligence and machine learning techniques such as neural networks and Box-Jenkins methodology were used to learn and predict energy usage. Both joint and individual dwelling behaviour was considered. Model predictive control techniques were then used to send the exact real-time price and observe the change in electricity consumption. Also, novel individual hot water heater controllers were modelled with the ability to forecast and look ahead the required energy, while responding to electricity grid imbalance. It proved to be possible to balance the generation and increase system efficiency while maintaining user satisfaction. For the second approach, the hybrid multi-power plant system was exploited. Three different power sources were modelled, namely thermal power plant, hydro power pant and flow battery. These sources were ranked by the ability to rapidly change the output of electricity. The power that needs to be balanced was then routed to different power units according to their response times. The calculation of the best power dispatch is proposed using a cost function. The aim of this research was to accommodate for the wind power imbalance without sacrificing the health of the power plants (minimising load variations for sensitive units)
    • …
    corecore