1,402 research outputs found

    Stochastic Tools for Network Intrusion Detection

    Full text link
    With the rapid development of Internet and the sharp increase of network crime, network security has become very important and received a lot of attention. We model security issues as stochastic systems. This allows us to find weaknesses in existing security systems and propose new solutions. Exploring the vulnerabilities of existing security tools can prevent cyber-attacks from taking advantages of the system weaknesses. We propose a hybrid network security scheme including intrusion detection systems (IDSs) and honeypots scattered throughout the network. This combines the advantages of two security technologies. A honeypot is an activity-based network security system, which could be the logical supplement of the passive detection policies used by IDSs. This integration forces us to balance security performance versus cost by scheduling device activities for the proposed system. By formulating the scheduling problem as a decentralized partially observable Markov decision process (DEC-POMDP), decisions are made in a distributed manner at each device without requiring centralized control. The partially observable Markov decision process (POMDP) is a useful choice for controlling stochastic systems. As a combination of two Markov models, POMDPs combine the strength of hidden Markov Model (HMM) (capturing dynamics that depend on unobserved states) and that of Markov decision process (MDP) (taking the decision aspect into account). Decision making under uncertainty is used in many parts of business and science.We use here for security tools.We adopt a high-quality approximation solution for finite-space POMDPs with the average cost criterion, and their extension to DEC-POMDPs. We show how this tool could be used to design a network security framework.Comment: Accepted by International Symposium on Sensor Networks, Systems and Security (2017

    Reduction of False Positives in Intrusion Detection Based on Extreme Learning Machine with Situation Awareness

    Get PDF
    Protecting computer networks from intrusions is more important than ever for our privacy, economy, and national security. Seemingly a month does not pass without news of a major data breach involving sensitive personal identity, financial, medical, trade secret, or national security data. Democratic processes can now be potentially compromised through breaches of electronic voting systems. As ever more devices, including medical machines, automobiles, and control systems for critical infrastructure are increasingly networked, human life is also more at risk from cyber-attacks. Research into Intrusion Detection Systems (IDSs) began several decades ago and IDSs are still a mainstay of computer and network protection and continue to evolve. However, detecting previously unseen, or zero-day, threats is still an elusive goal. Many commercial IDS deployments still use misuse detection based on known threat signatures. Systems utilizing anomaly detection have shown great promise to detect previously unseen threats in academic research. But their success has been limited in large part due to the excessive number of false positives that they produce. This research demonstrates that false positives can be better minimized, while maintaining detection accuracy, by combining Extreme Learning Machine (ELM) and Hidden Markov Models (HMM) as classifiers within the context of a situation awareness framework. This research was performed using the University of New South Wales - Network Based 2015 (UNSW-NB15) data set which is more representative of contemporary cyber-attack and normal network traffic than older data sets typically used in IDS research. It is shown that this approach provides better results than either HMM or ELM alone and with a lower False Positive Rate (FPR) than other comparable approaches that also used the UNSW-NB15 data set

    Automated Approach to Intrusion Detection in VM-based Dynamic Execution Environment

    Get PDF
    Because virtual computing platforms are dynamically changing, it is difficult to build high-quality intrusion detection system. In this paper, we present an automated approach to intrusions detection in order to maintain sufficient performance and reduce dependence on execution environment. We discuss a hidden Markov model strategy for abnormality detection using frequent system call sequences, letting us identify attacks and intrusions automatically and efficiently. We also propose an automated mining algorithm, named AGAS, to generate frequent system call sequences. In our approach, the detection performance is adaptively tuned according to the execution state every period. To improve performance, the period value is also under self-adjustment

    Self-organizing maps in computer security

    Get PDF
    • …
    corecore