1,944 research outputs found

    Feature selection using enhanced particle swarm optimisation for classification models.

    Get PDF
    In this research, we propose two Particle Swarm Optimisation (PSO) variants to undertake feature selection tasks. The aim is to overcome two major shortcomings of the original PSO model, i.e., premature convergence and weak exploitation around the near optimal solutions. The first proposed PSO variant incorporates four key operations, including a modified PSO operation with rectified personal and global best signals, spiral search based local exploitation, Gaussian distribution-based swarm leader enhancement, and mirroring and mutation operations for worst solution improvement. The second proposed PSO model enhances the first one through four new strategies, i.e., an adaptive exemplar breeding mechanism incorporating multiple optimal signals, nonlinear function oriented search coefficients, exponential and scattering schemes for swarm leader, and worst solution enhancement, respectively. In comparison with a set of 15 classical and advanced search methods, the proposed models illustrate statistical superiority for discriminative feature selection for a total of 13 data sets

    Chaos embedded opposition based learning for gravitational search algorithm

    Full text link
    Due to its robust search mechanism, Gravitational search algorithm (GSA) has achieved lots of popularity from different research communities. However, stagnation reduces its searchability towards global optima for rigid and complex multi-modal problems. This paper proposes a GSA variant that incorporates chaos-embedded opposition-based learning into the basic GSA for the stagnation-free search. Additionally, a sine-cosine based chaotic gravitational constant is introduced to balance the trade-off between exploration and exploitation capabilities more effectively. The proposed variant is tested over 23 classical benchmark problems, 15 test problems of CEC 2015 test suite, and 15 test problems of CEC 2014 test suite. Different graphical, as well as empirical analyses, reveal the superiority of the proposed algorithm over conventional meta-heuristics and most recent GSA variants.Comment: 33 pages, 5 Figure

    Intelligent human action recognition using an ensemble model of evolving deep networks with swarm-based optimization.

    Get PDF
    Automatic interpretation of human actions from realistic videos attracts increasing research attention owing to its growing demand in real-world deployments such as biometrics, intelligent robotics, and surveillance. In this research, we propose an ensemble model of evolving deep networks comprising Convolutional Neural Networks (CNNs) and bidirectional Long Short-Term Memory (BLSTM) networks for human action recognition. A swarm intelligence (SI)-based algorithm is also proposed for identifying the optimal hyper-parameters of the deep networks. The SI algorithm plays a crucial role for determining the BLSTM network and learning configurations such as the learning and dropout rates and the number of hidden neurons, in order to establish effective deep features that accurately represent the temporal dynamics of human actions. The proposed SI algorithm incorporates hybrid crossover operators implemented by sine, cosine, and tanh functions for multiple elite offspring signal generation, as well as geometric search coefficients extracted from a three-dimensional super-ellipse surface. Moreover, it employs a versatile search process led by the yielded promising offspring solutions to overcome stagnation. Diverse CNN–BLSTM networks with distinctive hyper-parameter settings are devised. An ensemble model is subsequently constructed by aggregating a set of three optimized CNN–BLSTM​ networks based on the average prediction probabilities. Evaluated using several publicly available human action data sets, our evolving ensemble deep networks illustrate statistically significant superiority over those with default and optimal settings identified by other search methods. The proposed SI algorithm also shows great superiority over several other methods for solving diverse high-dimensional unimodal and multimodal optimization functions with artificial landscapes

    Hybridization of modified sine cosine algorithm with tabu search for solving quadratic assignment problem

    Get PDF
    Sine Cosine Algorithm (SCA) is a population-based metaheuristic method that widely used to solve various optimization problem due to its ability in stabilizing between exploration and exploitation. However, SCA is rarely used to solve discrete optimization problem such as Quadratic Assignment Problem (QAP) due to the nature of its solution which produce continuous values and makes it challenging in solving discrete optimization problem. The SCA is also found to be trapped in local optima since its lacking in memorizing the moves. Besides, local search strategy is required in attaining superior results and it is usually designed based on the problem under study. Hence, this study aims to develop a hybrid modified SCA with Tabu Search (MSCA-TS) model to solve QAP. In QAP, a set of facilities is assigned to a set of locations to form a one-to-one assignment with minimum assignment cost. Firstly, the modified SCA (MSCA) model with cost-based local search strategy is developed. Then, the MSCA is hybridized with TS to prohibit revisiting the previous solutions. Finally, both designated models (MSCA and MSCA-TS) were tested on 60 QAP instances from QAPLIB. A sensitivity analysis is also performed to identify suitable parameter settings for both models. Comparison of results shows that MSCA-TS performs better than MSCA. The percentage of error and standard deviation for MSCA-TS are lower than the MSCA which are 2.4574 and 0.2968 respectively. The computational results also shows that the MSCA-TS is an effective and superior method in solving QAP when compared to the best-known solutions presented in the literature. The developed models may assist decision makers in searching the most suitable assignment for facilities and locations while minimizing cost

    An Improved Binary Grey-Wolf Optimizer with Simulated Annealing for Feature Selection

    Get PDF
    This paper proposes improvements to the binary grey-wolf optimizer (BGWO) to solve the feature selection (FS) problem associated with high data dimensionality, irrelevant, noisy, and redundant data that will then allow machine learning algorithms to attain better classification/clustering accuracy in less training time. We propose three variants of BGWO in addition to the standard variant, applying different transfer functions to tackle the FS problem. Because BGWO generates continuous values and FS needs discrete values, a number of V-shaped, S-shaped, and U-shaped transfer functions were investigated for incorporation with BGWO to convert their continuous values to binary. After investigation, we note that the performance of BGWO is affected by the selection of the transfer function. Then, in the first variant, we look to reduce the local minima problem by integrating an exploration capability to update the position of the grey wolf randomly within the search space with a certain probability; this variant was abbreviated as IBGWO. Consequently, a novel mutation strategy is proposed to select a number of the worst grey wolves in the population which are updated toward the best solution and randomly within the search space based on a certain probability to determine if the update is either toward the best or randomly. The number of the worst grey wolf selected by this strategy is linearly increased with the iteration. Finally, this strategy is combined with IBGWO to produce the second variant of BGWO that was abbreviated as LIBGWO. In the last variant, simulated annealing (SA) was integrated with LIBGWO to search around the best-so-far solution at the end of each iteration in order to identify better solutions. The performance of the proposed variants was validated on 32 datasets taken from the UCI repository and compared with six wrapper feature selection methods. The experiments show the superiority of the proposed improved variants in producing better classification accuracy than the other selected wrapper feature selection algorithms

    Population based optimization algorithms improvement using the predictive particles

    Get PDF
    A new efficient improvement, called Predictive Particle Modification (PPM), is proposed in this paper. This modification makes the particle look to the near area before moving toward the best solution of the group. This modification can be applied to any population algorithm. The basic philosophy of PPM is explained in detail. To evaluate the performance of PPM, it is applied to Particle Swarm Optimization (PSO) algorithm and Teaching Learning Based Optimization (TLBO) algorithm then tested using 23 standard benchmark functions. The effectiveness of these modifications are compared with the other unmodified population optimization algorithms based on the best solution, average solution, and convergence rate
    • …
    corecore