94 research outputs found

    Medical image encryption techniques: a technical survey and potential challenges

    Get PDF
    Among the most sensitive and important data in telemedicine systems are medical images. It is necessary to use a robust encryption method that is resistant to cryptographic assaults while transferring medical images over the internet. Confidentiality is the most crucial of the three security goals for protecting information systems, along with availability, integrity, and compliance. Encryption and watermarking of medical images address problems with confidentiality and integrity in telemedicine applications. The need to prioritize security issues in telemedicine applications makes the choice of a trustworthy and efficient strategy or framework all the more crucial. The paper examines various security issues and cutting-edge methods to secure medical images for use with telemedicine systems

    Design of a secure architecture for the exchange of biomedical information in m-Health scenarios

    Get PDF
    El paradigma de m-Salud (salud móvil) aboga por la integración masiva de las más avanzadas tecnologías de comunicación, red móvil y sensores en aplicaciones y sistemas de salud, para fomentar el despliegue de un nuevo modelo de atención clínica centrada en el usuario/paciente. Este modelo tiene por objetivos el empoderamiento de los usuarios en la gestión de su propia salud (p.ej. aumentando sus conocimientos, promocionando estilos de vida saludable y previniendo enfermedades), la prestación de una mejor tele-asistencia sanitaria en el hogar para ancianos y pacientes crónicos y una notable disminución del gasto de los Sistemas de Salud gracias a la reducción del número y la duración de las hospitalizaciones. No obstante, estas ventajas, atribuidas a las aplicaciones de m-Salud, suelen venir acompañadas del requisito de un alto grado de disponibilidad de la información biomédica de sus usuarios para garantizar una alta calidad de servicio, p.ej. fusionar varias señales de un usuario para obtener un diagnóstico más preciso. La consecuencia negativa de cumplir esta demanda es el aumento directo de las superficies potencialmente vulnerables a ataques, lo que sitúa a la seguridad (y a la privacidad) del modelo de m-Salud como factor crítico para su éxito. Como requisito no funcional de las aplicaciones de m-Salud, la seguridad ha recibido menos atención que otros requisitos técnicos que eran más urgentes en etapas de desarrollo previas, tales como la robustez, la eficiencia, la interoperabilidad o la usabilidad. Otro factor importante que ha contribuido a retrasar la implementación de políticas de seguridad sólidas es que garantizar un determinado nivel de seguridad implica unos costes que pueden ser muy relevantes en varias dimensiones, en especial en la económica (p.ej. sobrecostes por la inclusión de hardware extra para la autenticación de usuarios), en el rendimiento (p.ej. reducción de la eficiencia y de la interoperabilidad debido a la integración de elementos de seguridad) y en la usabilidad (p.ej. configuración más complicada de dispositivos y aplicaciones de salud debido a las nuevas opciones de seguridad). Por tanto, las soluciones de seguridad que persigan satisfacer a todos los actores del contexto de m-Salud (usuarios, pacientes, personal médico, personal técnico, legisladores, fabricantes de dispositivos y equipos, etc.) deben ser robustas y al mismo tiempo minimizar sus costes asociados. Esta Tesis detalla una propuesta de seguridad, compuesta por cuatro grandes bloques interconectados, para dotar de seguridad a las arquitecturas de m-Salud con unos costes reducidos. El primer bloque define un esquema global que proporciona unos niveles de seguridad e interoperabilidad acordes con las características de las distintas aplicaciones de m-Salud. Este esquema está compuesto por tres capas diferenciadas, diseñadas a la medidas de los dominios de m-Salud y de sus restricciones, incluyendo medidas de seguridad adecuadas para la defensa contra las amenazas asociadas a sus aplicaciones de m-Salud. El segundo bloque establece la extensión de seguridad de aquellos protocolos estándar que permiten la adquisición, el intercambio y/o la administración de información biomédica -- por tanto, usados por muchas aplicaciones de m-Salud -- pero no reúnen los niveles de seguridad detallados en el esquema previo. Estas extensiones se concretan para los estándares biomédicos ISO/IEEE 11073 PHD y SCP-ECG. El tercer bloque propone nuevas formas de fortalecer la seguridad de los tests biomédicos, que constituyen el elemento esencial de muchas aplicaciones de m-Salud de carácter clínico, mediante codificaciones novedosas. Finalmente el cuarto bloque, que se sitúa en paralelo a los anteriores, selecciona herramientas genéricas de seguridad (elementos de autenticación y criptográficos) cuya integración en los otros bloques resulta idónea, y desarrolla nuevas herramientas de seguridad, basadas en señal -- embedding y keytagging --, para reforzar la protección de los test biomédicos.The paradigm of m-Health (mobile health) advocates for the massive integration of advanced mobile communications, network and sensor technologies in healthcare applications and systems to foster the deployment of a new, user/patient-centered healthcare model enabling the empowerment of users in the management of their health (e.g. by increasing their health literacy, promoting healthy lifestyles and the prevention of diseases), a better home-based healthcare delivery for elderly and chronic patients and important savings for healthcare systems due to the reduction of hospitalizations in number and duration. It is a fact that many m-Health applications demand high availability of biomedical information from their users (for further accurate analysis, e.g. by fusion of various signals) to guarantee high quality of service, which on the other hand entails increasing the potential surfaces for attacks. Therefore, it is not surprising that security (and privacy) is commonly included among the most important barriers for the success of m-Health. As a non-functional requirement for m-Health applications, security has received less attention than other technical issues that were more pressing at earlier development stages, such as reliability, eficiency, interoperability or usability. Another fact that has contributed to delaying the enforcement of robust security policies is that guaranteeing a certain security level implies costs that can be very relevant and that span along diferent dimensions. These include budgeting (e.g. the demand of extra hardware for user authentication), performance (e.g. lower eficiency and interoperability due to the addition of security elements) and usability (e.g. cumbersome configuration of devices and applications due to security options). Therefore, security solutions that aim to satisfy all the stakeholders in the m-Health context (users/patients, medical staff, technical staff, systems and devices manufacturers, regulators, etc.) shall be robust and, at the same time, minimize their associated costs. This Thesis details a proposal, composed of four interrelated blocks, to integrate appropriate levels of security in m-Health architectures in a cost-efcient manner. The first block designes a global scheme that provides different security and interoperability levels accordingto how critical are the m-Health applications to be implemented. This consists ofthree layers tailored to the m-Health domains and their constraints, whose security countermeasures defend against the threats of their associated m-Health applications. Next, the second block addresses the security extension of those standard protocols that enable the acquisition, exchange and/or management of biomedical information | thus, used by many m-Health applications | but do not meet the security levels described in the former scheme. These extensions are materialized for the biomedical standards ISO/IEEE 11073 PHD and SCP-ECG. Then, the third block proposes new ways of enhancing the security of biomedical standards, which are the centerpiece of many clinical m-Health applications, by means of novel codings. Finally the fourth block, with is parallel to the others, selects generic security methods (for user authentication and cryptographic protection) whose integration in the other blocks results optimal, and also develops novel signal-based methods (embedding and keytagging) for strengthening the security of biomedical tests. The layer-based extensions of the standards ISO/IEEE 11073 PHD and SCP-ECG can be considered as robust, cost-eficient and respectful with their original features and contents. The former adds no attributes to its data information model, four new frames to the service model |and extends four with new sub-frames|, and only one new sub-state to the communication model. Furthermore, a lightweight architecture consisting of a personal health device mounting a 9 MHz processor and an aggregator mounting a 1 GHz processor is enough to transmit a 3-lead electrocardiogram in real-time implementing the top security layer. The extra requirements associated to this extension are an initial configuration of the health device and the aggregator, tokens for identification/authentication of users if these devices are to be shared and the implementation of certain IHE profiles in the aggregator to enable the integration of measurements in healthcare systems. As regards to the extension of SCP-ECG, it only adds a new section with selected security elements and syntax in order to protect the rest of file contents and provide proper role-based access control. The overhead introduced in the protected SCP-ECG is typically 2{13 % of the regular file size, and the extra delays to protect a newly generated SCP-ECG file and to access it for interpretation are respectively a 2{10 % and a 5 % of the regular delays. As regards to the signal-based security techniques developed, the embedding method is the basis for the proposal of a generic coding for tests composed of biomedical signals, periodic measurements and contextual information. This has been adjusted and evaluated with electrocardiogram and electroencephalogram-based tests, proving the objective clinical quality of the coded tests, the capacity of the coding-access system to operate in real-time (overall delays of 2 s for electrocardiograms and 3.3 s for electroencephalograms) and its high usability. Despite of the embedding of security and metadata to enable m-Health services, the compression ratios obtained by this coding range from ' 3 in real-time transmission to ' 5 in offline operation. Complementarily, keytagging permits associating information to images (and other signals) by means of keys in a secure and non-distorting fashion, which has been availed to implement security measures such as image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. The tests conducted indicate a remarkable robustness-capacity tradeoff that permits implementing all this measures simultaneously, and the compatibility of keytagging with JPEG2000 compression, maintaining this tradeoff while setting the overall keytagging delay in only ' 120 ms for any image size | evidencing the scalability of this technique. As a general conclusion, it has been demonstrated and illustrated with examples that there are various, complementary and structured manners to contribute in the implementation of suitable security levels for m-Health architectures with a moderate cost in budget, performance, interoperability and usability. The m-Health landscape is evolving permanently along all their dimensions, and this Thesis aims to do so with its security. Furthermore, the lessons learned herein may offer further guidance for the elaboration of more comprehensive and updated security schemes, for the extension of other biomedical standards featuring low emphasis on security or privacy, and for the improvement of the state of the art regarding signal-based protection methods and applications

    An improved randomization of a multi-blocking jpeg based steganographic system.

    Get PDF
    Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2010.Steganography is classified as the art of hiding information. In a digital context, this refers to our ability to hide secret messages within innocent digital cover data. The digital domain offers many opportunities for possible cover mediums, such as cloud based hiding (saving secret information within the internet and its structure), image based hiding, video and audio based hiding, text based documents as well as the potential of hiding within any set of compressed data. This dissertation focuses on the image based domain and investigates currently available image based steganographic techniques. After a review of the history of the field, and a detailed survey of currently available JPEG based steganographic systems, the thesis focuses on the systems currently considered to be secure and introduces mechanisms that have been developed to detect them. The dissertation presents a newly developed system that is designed to counter act the current weakness in the YASS JPEG based steganographic system. By introducing two new levels of randomization to the embedding process, the proposed system offers security benefits over YASS. The introduction of randomization to the B‐block sizes as well as the E‐block sizes used in the embedding process aids in increasing security and the potential for new, larger E‐block sizes also aids in providing an increased set of candidate coefficients to be used for embedding. The dissertation also introduces a new embedding scheme which focuses on hiding in medium frequency coefficients. By hiding in these medium frequency coefficients, we allow for more aggressive embedding without risking more visual distortion but trade this off with a risk of higher error rates due to compression losses. Finally, the dissertation presents simulation aimed at testing the proposed system performance compared to other JPEG based steganographic systems with similar embedding properties. We show that the new system achieves an embedding capacity of 1.6, which represents round a 7 times improvement over YASS. We also show that the new system, although introducing more bits in error per B‐block, successfully allows for the embedding of up to 2 bits per B‐block more than YASS at a similar error rate per B‐block. We conclude the results by demonstrating the new systems ability to resist detection both through human observation, via a survey, as well as resist computer aided analysis

    Efficient simultaneous encryption and compression of digital videos in computationally constrained applications

    Get PDF
    This thesis is concerned with the secure video transmission over open and wireless network channels. This would facilitate adequate interaction in computationally constrained applications among trusted entities such as in disaster/conflict zones, secure airborne transmission of videos for intelligence/security or surveillance purposes, and secure video communication for law enforcing agencies in crime fighting or in proactive forensics. Video content is generally too large and vulnerable to eavesdropping when transmitted over open network channels so that compression and encryption become very essential for storage and/or transmission. In terms of security, wireless channels, are more vulnerable than other kinds of mediums to a variety of attacks and eavesdropping. Since wireless communication is the main mode in the above applications, protecting video transmissions from unauthorized access through such network channels is a must. The main and multi-faceted challenges that one faces in implementing such a task are related to competing, and to some extent conflicting, requirements of a number of standard control factors relating to the constrained bandwidth, reasonably high image quality at the receiving end, the execution time, and robustness against security attacks. Applying both compression and encryption techniques simultaneously is a very tough challenge due to the fact that we need to optimize the compression ratio, time complexity, security and the quality simultaneously. There are different available image/video compression schemes that provide reasonable compression while attempting to maintain image quality, such as JPEG, MPEG and JPEG2000. The main approach to video compression is based on detecting and removing spatial correlation within the video frames as well as temporal correlations across the video frames. Temporal correlations are expected to be more evident across sequences of frames captured within a short period of time (often a fraction of a second). Correlation can be measured in terms of similarity between blocks of pixels. Frequency domain transforms such as the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT) have both been used restructure the frequency content (coefficients) to become amenable for efficient detection. JPEG and MPEG use DCT while JPEG2000 uses DWT. Removing spatial/temporal correlation encodes only one block from each class of equivalent (i.e. similar) blocks and remembering the position of all other block within the equivalence class. JPEG2000 compressed images achieve higher image quality than JPEG for the same compression ratios, while DCT based coding suffer from noticeable distortion at high compression ratio but when applied to any block it is easy to isolate the significant coefficients from the non-significant ones. Efficient video encryption in computationally constrained applications is another challenge on its own. It has long been recognised that selective encryption is the only viable approach to deal with the overwhelming file size. Selection can be made in the spatial or frequency domain. Efficiency of simultaneous compression and encryption is a good reason for us to apply selective encryption in the frequency domain. In this thesis we develop a hybrid of DWT and DCT for improved image/video compression in terms of image quality, compression ratio, bandwidth, and efficiency. We shall also investigate other techniques that have similar properties to the DCT in terms of representation of significant wavelet coefficients. The statistical properties of wavelet transform high frequency sub-bands provide one such approach, and we also propose phase sensing as another alternative but very efficient scheme. Simultaneous compression and encryption, in our investigations, were aimed at finding the best way of applying these two tasks in parallel by selecting some wavelet sub-bands for encryptions and applying compression on the other sub-bands. Since most spatial/temporal correlation appear in the high frequency wavelet sub-bands and the LL sub-bands of wavelet transformed images approximate the original images then we select the LL-sub-band data for encryption and the non-LL high frequency sub-band coefficients for compression. We also follow the common practice of using stream ciphers to meet efficiency requirements of real-time transmission. For key stream generation we investigated a number of schemes and the ultimate choice will depend on robustness to attacks. The still image (i.e. RF’s) are compressed with a modified EZW wavelet scheme by applying the DCT on the blocks of the wavelet sub-bands, selecting appropriate thresholds for determining significance of coefficients, and encrypting the EZW thresholds only with a simple 10-bit LFSR cipher This scheme is reasonably efficient in terms of processing time, compression ratio, image quality, as well was security robustness against statistical and frequency attack. However, many areas for improvements were identified as necessary to achieve the objectives of the thesis. Through a process of refinement we developed and tested 3 different secure efficient video compression schemes, whereby at each step we improve the performance of the scheme in the previous step. Extensive experiments are conducted to test performance of the new scheme, at each refined stage, in terms of efficiency, compression ratio, image quality, and security robustness. Depending on the aspects of compression that needs improvement at each refinement step, we replaced the previous block coding scheme with a more appropriate one from among the 3 above mentioned schemes (i.e. DCT, Edge sensing and phase sensing) for the reference frames or the non-reference ones. In subsequent refinement steps we apply encryption to a slightly expanded LL-sub-band using successively more secure stream ciphers, but with different approaches to key stream generation. In the first refinement step, encryption utilized two LFSRs seeded with three secret keys to scramble the significant wavelet LL-coefficients multiple times. In the second approach, the encryption algorithm utilises LFSR to scramble the wavelet coefficients of the edges extracted from the low frequency sub-band. These edges are mapped from the high frequency sub-bands using different threshold. Finally, use a version of the A5 cipher combined with chaotic logistic map to encrypt the significant parameters of the LL sub-band. Our empirical results show that the refinement process achieves the ultimate objectives of the thesis, i.e. efficient secure video compression scheme that is scalable in terms of the frame size at about 100 fps and satisfying the following features; high compression, reasonable quality, and resistance to the statistical, frequency and the brute force attack with low computational processing. Although image quality fluctuates depending on video complexity, in the conclusion we recommend an adaptive implementation of our scheme. Although this thesis does not deal with transmission tasks but the efficiency achieved in terms of video encryption and compression time as well as in compression ratios will be sufficient for real-time secure transmission of video using commercially available mobile computing devices

    End-to-end security in active networks

    Get PDF
    Active network solutions have been proposed to many of the problems caused by the increasing heterogeneity of the Internet. These ystems allow nodes within the network to process data passing through in several ways. Allowing code from various sources to run on routers introduces numerous security concerns that have been addressed by research into safe languages, restricted execution environments, and other related areas. But little attention has been paid to an even more critical question: the effect on end-to-end security of active flow manipulation. This thesis first examines the threat model implicit in active networks. It develops a framework of security protocols in use at various layers of the networking stack, and their utility to multimedia transport and flow processing, and asks if it is reasonable to give active routers access to the plaintext of these flows. After considering the various security problem introduced, such as vulnerability to attacks on intermediaries or coercion, it concludes not. We then ask if active network systems can be built that maintain end-to-end security without seriously degrading the functionality they provide. We describe the design and analysis of three such protocols: a distributed packet filtering system that can be used to adjust multimedia bandwidth requirements and defend against denial-of-service attacks; an efficient composition of link and transport-layer reliability mechanisms that increases the performance of TCP over lossy wireless links; and a distributed watermarking servicethat can efficiently deliver media flows marked with the identity of their recipients. In all three cases, similar functionality is provided to designs that do not maintain end-to-end security. Finally, we reconsider traditional end-to-end arguments in both networking and security, and show that they have continuing importance for Internet design. Our watermarking work adds the concept of splitting trust throughout a network to that model; we suggest further applications of this idea

    Secure covert communications over streaming media using dynamic steganography

    Get PDF
    Streaming technologies such as VoIP are widely embedded into commercial and industrial applications, so it is imperative to address data security issues before the problems get really serious. This thesis describes a theoretical and experimental investigation of secure covert communications over streaming media using dynamic steganography. A covert VoIP communications system was developed in C++ to enable the implementation of the work being carried out. A new information theoretical model of secure covert communications over streaming media was constructed to depict the security scenarios in streaming media-based steganographic systems with passive attacks. The model involves a stochastic process that models an information source for covert VoIP communications and the theory of hypothesis testing that analyses the adversary‘s detection performance. The potential of hardware-based true random key generation and chaotic interval selection for innovative applications in covert VoIP communications was explored. Using the read time stamp counter of CPU as an entropy source was designed to generate true random numbers as secret keys for streaming media steganography. A novel interval selection algorithm was devised to choose randomly data embedding locations in VoIP streams using random sequences generated from achaotic process. A dynamic key updating and transmission based steganographic algorithm that includes a one-way cryptographical accumulator integrated into dynamic key exchange for covert VoIP communications, was devised to provide secure key exchange for covert communications over streaming media. The discrete logarithm problem in mathematics and steganalysis using t-test revealed the algorithm has the advantage of being the most solid method of key distribution over a public channel. The effectiveness of the new steganographic algorithm for covert communications over streaming media was examined by means of security analysis, steganalysis using non parameter Mann-Whitney-Wilcoxon statistical testing, and performance and robustness measurements. The algorithm achieved the average data embedding rate of 800 bps, comparable to other related algorithms. The results indicated that the algorithm has no or little impact on real-time VoIP communications in terms of speech quality (< 5% change in PESQ with hidden data), signal distortion (6% change in SNR after steganography) and imperceptibility, and it is more secure and effective in addressing the security problems than other related algorithms

    Steganography and steganalysis: data hiding in Vorbis audio streams

    Get PDF
    The goal of the current work is to introduce ourselves in the world of steganography and steganalysis, centering our efforts in acoustic signals, a branch of steganography and steganalysis which has received much less attention than steganography and steganalysis for images. With this purpose in mind, it’s essential to get first a basic level of understanding of signal theory and the properties of the Human Auditory System, and we will dedicate ourselves to that aim during the first part of this work. Once established those basis, in the second part, we will obtain a precise image of the state of the art in steganographic and steganalytic sciences, from which we will be able to establish or deduce some good practices guides. With both previous subjects in mind, we will be able to create, design and implement a stego-system over Vorbis audio codec and, finally, as conclusion, analyze it using the principles studied during the first and second parts
    corecore