772 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Pilot Beam Sequence Design for Channel Estimation in Millimeter-Wave MIMO Systems: A POMDP Framework

    Full text link
    In this paper, adaptive pilot beam sequence design for channel estimation in large millimeter-wave (mmWave) MIMO systems is considered. By exploiting the sparsity of mmWave MIMO channels with the virtual channel representation and imposing a Markovian random walk assumption on the physical movement of the line-of-sight (LOS) and reflection clusters, it is shown that the sparse channel estimation problem in large mmWave MIMO systems reduces to a sequential detection problem that finds the locations and values of the non-zero-valued bins in a two-dimensional rectangular grid, and the optimal adaptive pilot design problem can be cast into the framework of a partially observable Markov decision process (POMDP). Under the POMDP framework, an optimal adaptive pilot beam sequence design method is obtained to maximize the accumulated transmission data rate for a given period of time. Numerical results are provided to validate our pilot signal design method and they show that the proposed method yields good performance.Comment: 6 pages, 6 figures, submitted to IEEE ICC 201

    Monte Carlo Bayesian Reinforcement Learning

    Full text link
    Bayesian reinforcement learning (BRL) encodes prior knowledge of the world in a model and represents uncertainty in model parameters by maintaining a probability distribution over them. This paper presents Monte Carlo BRL (MC-BRL), a simple and general approach to BRL. MC-BRL samples a priori a finite set of hypotheses for the model parameter values and forms a discrete partially observable Markov decision process (POMDP) whose state space is a cross product of the state space for the reinforcement learning task and the sampled model parameter space. The POMDP does not require conjugate distributions for belief representation, as earlier works do, and can be solved relatively easily with point-based approximation algorithms. MC-BRL naturally handles both fully and partially observable worlds. Theoretical and experimental results show that the discrete POMDP approximates the underlying BRL task well with guaranteed performance.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012
    corecore