56,766 research outputs found

    Global optimization method for design problems

    Get PDF
    In structural design optimization method, numerical techniques are increasingly used. In typical structural optimization problems there may be many locally minimum configurations. For that reason, the application of a global method, which may escape from the locally minimum points, remains essential. In this paper, a new hybrid simulated annealing algorithm for global optimization with constraints is proposed. We have developed a new algorithm called Adaptive Simulated Annealing Penalty Simultaneous Perturbation Stochastic Approximation algorithm (ASAPSPSA) that uses Adaptive Simulated Annealing algorithm (ASA); ASA is a series of modifications done to the traditional simulated annealing algorithm that gives the global solution of an objective function. In addition, the stochastic method Simultaneous Perturbation Stochastic Approximation (SPSA) for solving unconstrained optimization problems is used to refine the solution. We also propose Penalty SPSA (PSPSA) for solving constrained optimization problems. The constraints are handled using exterior point penalty functions. The hybridization of both techniques ASA and PSPSA provides a powerful hybrid heuristic optimization method; the proposed method is applicable to any problem where the topology of the structure is not fixed; it is simple and capable of handling problems subject to any number of nonlinear constraints. Extensive tests on the ASAPSPSA as a global optimization method are presented; its performance as a viable optimization method is demonstrated by applying it first to a series of benchmark functions with 2 - 50 dimensions and then it is used in structural design to demonstrate its applicability and efficiency

    The Hybrid Invasive Weed Optimization-Shuffled Frog-leaping Algorithm Applied to Optimal Design of Frame Structures

    Get PDF
    In this article, an efficient hybrid optimization algorithm based on invasive weed optimization algorithm and shuffled frog-leaping algorithm is utilized for optimum design of skeletal frame structures. The shuffled frog-leaping algorithm is a population-based cooperative search metaphor inspired by natural memetic, and the invasive weed optimization algorithm is an optimization method based on dynamic growth of weeds colony. In the proposed algorithm, shuffled frog-leaping algorithm works to find optimal solution region rapidly, and invasive weed optimization performs the global search. Different benchmark frame structures are optimized using the new hybrid algorithm. Three design examples are tested using the new method. This algorithm converges to better or at least the same solutions compared the utilized methods with a smaller number of analyses. The outcomes are compared to those obtained previously using other recently developed meta-heuristic optimization methods

    Initial Solution Heuristic for Portfolio Optimization of Electricity Markets Participation

    Get PDF
    Meta-heuristic search methods are used to find near optimal global solutions for difficult optimization problems. These meta-heuristic processes usually require some kind of knowledge to overcome the local optimum locations. One way to achieve diversification is to start the search procedure from a solution already obtained through another method. Since this solution is already validated the algorithm will converge easily to a greater global solution. In this work, several well-known meta-heuristics are used to solve the problem of electricity markets participation portfolio optimization. Their search performance is compared to the performance of a proposed hybrid method (ad-hoc heuristic to generate the initial solution, which is combined with the search method). The addressed problem is the portfolio optimization for energy markets participation, where there are different markets where it is possible to negotiate. In this way the result will be the optimal allocation of electricity in the different markets in order to obtain the maximum return quantified through the objective function.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013.info:eu-repo/semantics/publishedVersio

    Hybrid optimization coupling electromagnetism and descent search for engineering problems

    Get PDF
    In this paper, we present a new stochastic hybrid technique for constrained global optimization. It is a combination of the electromagnetism-like (EM) mechanism with an approximate descent search, which is a derivative-free procedure with high ability of producing a descent direction. Since the original EM algorithm is specifically designed for solving bound constrained problems, the approach herein adopted for handling the constraints of the problem relies on a simple heuristic denoted by feasibility and dominance rules. The hybrid EM method is tested on four well-known engineering design problems and the numerical results demonstrate the effectiveness of the proposed approach

    A hybrid training method for ANNs and its application in multi faults diagnosis of rolling bearing

    Get PDF
    A hybrid training method with probabilistic adaptive strategy for feedforward artificial neural network was proposed and applied to the problem of multi faults diagnosis of rolling bearing. The traditional training method such as LM shows fast convergence speed, but it’s easy to fall into local minimum. The heuristic method such as DE shows good global continuous optimization ability, but its convergence speed is slow. A hybrid training method of LM and DE is presented, and it overcomes the defects by using the advantages of each other. Probabilistic adaptive strategy which could save the time in some situation is adopted. Finally, this method is applied to the problem of rolling bearing faults diagnosis, and compares to other methods. The results show that, high correct classification rate were achieved by LM, and hybrid training methods still continued to converge while traditional method such as LM stopped the convergence. The probabilistic adaptive strategy strengthened the convergence ability of hybrid method in the latter progress, and achieved higher correct rate

    A better alternative to dynamic programming for offline energy optimization in hybrid-electric vehicles

    Get PDF
    International audienceThis article focusses on the well-known problem of energy management for hybrid-electric vehicles. Although researches on this problem have recently intensified. Dynamic programming (DP) is still considered as the reference method because it obtains the best solutions of the literature so far, even though it requires a significant computational time. This article however, describes two heuristic-global-optimization-based algorithms that not only require less computational time than DP, but also produce better solutions, with significantly lower fuel consumption cost

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    SQG-Differential Evolution for difficult optimization problems under a tight function evaluation budget

    Full text link
    In the context of industrial engineering, it is important to integrate efficient computational optimization methods in the product development process. Some of the most challenging simulation-based engineering design optimization problems are characterized by: a large number of design variables, the absence of analytical gradients, highly non-linear objectives and a limited function evaluation budget. Although a huge variety of different optimization algorithms is available, the development and selection of efficient algorithms for problems with these industrial relevant characteristics, remains a challenge. In this communication, a hybrid variant of Differential Evolution (DE) is introduced which combines aspects of Stochastic Quasi-Gradient (SQG) methods within the framework of DE, in order to improve optimization efficiency on problems with the previously mentioned characteristics. The performance of the resulting derivative-free algorithm is compared with other state-of-the-art DE variants on 25 commonly used benchmark functions, under tight function evaluation budget constraints of 1000 evaluations. The experimental results indicate that the new algorithm performs excellent on the 'difficult' (high dimensional, multi-modal, inseparable) test functions. The operations used in the proposed mutation scheme, are computationally inexpensive, and can be easily implemented in existing differential evolution variants or other population-based optimization algorithms by a few lines of program code as an non-invasive optional setting. Besides the applicability of the presented algorithm by itself, the described concepts can serve as a useful and interesting addition to the algorithmic operators in the frameworks of heuristics and evolutionary optimization and computing
    • …
    corecore