10 research outputs found

    Fast initialization of Nyquist echo cancellers using circular convolution technique

    Get PDF
    For full-duplex high-speed data transmission over the two-wire line using the same frequency band, it is required to sufficiently suppress the echo. The use of a conventional adaptation method may take a long time to train the echo canceler. Fast training can be achieved by initializing the coefficients of the echo canceler with an estimate of the impulse response of the echo path. In this letter, we propose a method for fast initialization of the echo canceler by using a circular convolution technique. The proposed method enables the use of real-valued training signals instead of complex-valued ones, resulting in significant reduction of the initialization time as well as the implementation complexity. Finally, the performance of the proposed method is analyzed and verified by computer simulation

    Zipper - a Duplex Method for VDSL based on DMT

    Get PDF
    We present a new duplex scheme, called Zipper, for discrete multitone (DMT)-based very high bit-rate digital subscriber line (VDSL) systems on copper wires. This scheme divides the available bandwidth by assigning different subcarriers for the upstream and downstream directions. It has high flexibility to divide the capacity between the up and downstream, as well as good coexistence possibilities with other systems such as ADSL. Simulation results show the high bit-rate performance in different environments such as mixed ADSL and VDSL traffic under radio frequency interference and with different background noise source

    Leonardo Silva Resende

    Get PDF

    Multi-User Signal and Spectra Coordination for Digital Subscriber Lines

    Get PDF
    The appetite amongst consumers for ever higher data-rates seems insatiable. This booming market presents a huge opportunity for telephone and cable operators. It also presents a challenge: the delivery of broadband services to millions of customers across sparsely populated areas. Fully fibre-based networks, whilst technically the most advanced solution, are prohibitively expensive to deploy. Digital subscriber lines (DSL) provide an alternative solution. Seen as a stepping-stone to a fully fibre-based network, DSL operates over telephone lines that are already in place, minimizing the cost of deployment. The basic principle behind DSL technology is to increase data-rate by widening the transmission bandwidth. Unfortunately, operating at high frequencies, in a medium originally designed for voice-band transmission, leads to crosstalk between the different DSLs. Crosstalk is typically 10-15 dB larger than the background noise and is the dominant source of performance degradation in DSL. This thesis develops practical multi-user techniques for mitigating crosstalk in DSL. The techniques proposed have low complexity, low latency, and are compatible with existing customer premises equipment (CPE). In addition to being practical, the techniques also yield near-optimal performance, operating close to the theoretical multi-user channel capacity. Multi-user techniques are based on the coordination of the different users in a network, and this can be done on either a spectral or signal level

    Estimation and detection of transmission line characteristics in the copper access network

    Get PDF
    The copper access-network operators face the challenge of developing and maintaining cost-effective digital subscriber line (DSL) services that are competitive to other broadband access technologies. The way forward is dictated by the demand of ever increasing data rates on the twisted-pair copper lines. To meet this demand, a relocation of the DSL transceivers in cabinets closer to the customers are often necessary combined with a joint expansion of the accompanying optical-fiber backhaul network. The equipment of the next generation copper network are therefore becoming more scattered and geographically distributed, which increases the requirements of automated line qualification with fault detection and localization. This scenario is addressed in the first five papers of this dissertation where the focus is on estimation and detection of transmission line characteristics in the copper access network. The developed methods apply model-based optimization with an emphasis on using low-order modeling and a priori information of the given problem. More specifically, in Paper I a low-order and causal cable model is derived based on the Hilbert transform. This model is successfully applied in three contributions of this dissertation. In Paper II, a class of low-complexity unbiased estimators for the frequency-dependent characteristic impedance is presented that uses one-port measurements only. The so obtained characteristic impedance paves the way for enhanced time domain reflectometry (a.k.a. TDR) on twisted-pair lines. In Paper III, the problem of estimating a nonhomogeneous and dispersive transmission line is investigated and a space-frequency optimization approach is developed for the DSL application. The accompanying analysis shows which parameters are of interest to estimate and further suggests the introduction of the concept capacitive length that overcomes the necessity of a priori knowledge of the physical line length. In Paper IV, two methods are developed for detection and localization of load coils present in so-called loaded lines. In Paper V, line topology identification is addressed with varying degree of a priori information. In doing so, a model-based optimization approach is employed that utilizes multi-objective evolutionary computation based on one/two-port measurements. A complement to transceiver relocation that potentially enhances the total data throughput in the copper access network is dynamic spectrum management (DSM). This promising multi-user transmission technique aims at maximizing the transmission rates, and/or minimizing the power consumption, by mitigating or cancelling the dominating crosstalk interference between twisted-pair lines in the same cable binder. Hence the spectral utilization is improved by optimizing the transmit signals in order to minimize the crosstalk interference. However, such techniques rely on accurate information of the (usually) unknown crosstalk channels. This issue is the main focus of Paper VI and VII of this dissertation in which Paper VI deals with estimation of the crosstalk channels between twisted-pair lines. More specifically, an unbiased estimator for the square-magnitude of the crosstalk channels is derived from which a practical procedure is developed that can be implemented with standardized DSL modems already installed in the copper access network. In Paper VII the impact such a non-ideal estimator has on the performance of DSM is analyzed and simulated. Finally, in Paper VIII a novel echo cancellation algorithm for DMT-based DSL modems is presented

    Satellite Communications

    Get PDF
    This study is motivated by the need to give the reader a broad view of the developments, key concepts, and technologies related to information society evolution, with a focus on the wireless communications and geoinformation technologies and their role in the environment. Giving perspective, it aims at assisting people active in the industry, the public sector, and Earth science fields as well, by providing a base for their continued work and thinking
    corecore