3,729 research outputs found

    A hybrid genetic algorithm and inver over approach for the travelling salesman problem

    Get PDF
    This article posted here with permission of the IEEE - Copyright @ 2010 IEEEThis paper proposes a two-phase hybrid approach for the travelling salesman problem (TSP). The first phase is based on a sequence based genetic algorithm (SBGA) with an embedded local search scheme. Within the SBGA, a memory is introduced to store good sequences (sub-tours) extracted from previous good solutions and the stored sequences are used to guide the generation of offspring via local search during the evolution of the population. Additionally, we also apply some techniques to adapt the key parameters based on whether the best individual of the population improves or not and maintain the diversity. After SBGA finishes, the hybrid approach enters the second phase, where the inver over (IO) operator, which is a state-of-the-art algorithm for the TSP, is used to further improve the solution quality of the population. Experiments are carried out to investigate the performance of the proposed hybrid approach in comparison with several relevant algorithms on a set of benchmark TSP instances. The experimental results show that the proposed hybrid approach is efficient in finding good quality solutions for the test TSPs.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/E060722/1

    The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm

    Get PDF
    The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances

    Development of Heuristic Approaches for Last-Mile Delivery TSP with a Truck and Multiple Drones

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are gaining momentum in many civil and military sectors. An example is represented by the logistics sector, where UAVs have been proven to be able to improve the efficiency of the process itself, as their cooperation with trucks can decrease the delivery time and reduce fuel consumption. In this paper, we first state a mathematical formulation of the Travelling Salesman Problem (TSP) applied to logistic routing, where a truck cooperates synchronously with multiple UAVs for parcel delivery. Then, we propose, implement, and compare different sub-optimal routing approaches to the formulated mFSTSP (multiple Flying Sidekick Travelling Salesman Problem) since the inherent combinatorial computational complexity of the problem makes it unattractable for commercial Mixed-Integer Linear Programming (MILP) solvers. A local search algorithm, two hybrid genetic algorithms that permutate feasible and infeasible solutions, and an alternative ad-hoc greedy method are evaluated in terms of the total delivery time of the output schedule. For the sake of the evaluation, the savings in terms of delivery time over the well-documented truck-only TSP solution are investigated for each proposed routing solution, and this is repeated for two different scenarios. Monte Carlo simulations corroborate the results

    Experiments with the Swarm Intelligence

    Get PDF
    Práce se zabývá rojovou inteligencí jako podoborem umělé inteligence. Stručně popisuje biologické pozadí problematiky a zabývá se také principy hledání cest v mravenčích koloniích. Představena je i oblast kombinatorické optimalizace a detailně jsou definovány úlohy Travelling Salesman Problem a Quadratic Assignment Problem. Hlavní část práce sestává z popisu metod rojové inteligence pro řešení uvedených problémů a zhodnocení experimentů, které byly na těchto metodách provedeny. Konkrétně jde o algoritmy Ant System, Ant Colony System, Hybrid Ant System a Max-Min Ant System. V rámci práce byla také navržena a otestována vlastní metoda Genetic Ant System, která obohacuje základní Ant System mimo jiné o vývoj parametrů jednotek na základě genetických principů. V rámci obou řešených úloh jsou porovnány výsledky popisovaných metod společně s výsledky metod klasické umělé inteligence.This work deals with the issue of swarm intelligence as a subdiscipline of artificial intelligence. It describes biological background of the dilemma briefly and presents the principles of searching paths in ant colonies as well. There is also adduced combinatorial optimization and two selected tasks are defined in detail: Travelling Salesman Problem and Quadratic Assignment Problem. The main part of this work consists of description of swarm intelligence methods for solving mentioned problems and evaluation of experiments that were made on these methods. There were tested Ant System, Ant Colony System, Hybrid Ant System and Max-Min Ant System algorithm. Within the work there were also designed and tested my own method Genetic Ant System which enriches the basic Ant System i.a. with development of unit parameters based on genetical principles. The results of described methods were compared together with the ones of classical artificial intelligence within the frame of both solved problems.
    corecore