7,264 research outputs found

    Machine learning in solar physics

    Full text link
    The application of machine learning in solar physics has the potential to greatly enhance our understanding of the complex processes that take place in the atmosphere of the Sun. By using techniques such as deep learning, we are now in the position to analyze large amounts of data from solar observations and identify patterns and trends that may not have been apparent using traditional methods. This can help us improve our understanding of explosive events like solar flares, which can have a strong effect on the Earth environment. Predicting hazardous events on Earth becomes crucial for our technological society. Machine learning can also improve our understanding of the inner workings of the sun itself by allowing us to go deeper into the data and to propose more complex models to explain them. Additionally, the use of machine learning can help to automate the analysis of solar data, reducing the need for manual labor and increasing the efficiency of research in this field.Comment: 100 pages, 13 figures, 286 references, accepted for publication as a Living Review in Solar Physics (LRSP

    Novel 129Xe Magnetic Resonance Imaging and Spectroscopy Measurements of Pulmonary Gas-Exchange

    Get PDF
    Gas-exchange is the primary function of the lungs and involves removing carbon dioxide from the body and exchanging it within the alveoli for inhaled oxygen. Several different pulmonary, cardiac and cardiovascular abnormalities have negative effects on pulmonary gas-exchange. Unfortunately, clinical tests do not always pinpoint the problem; sensitive and specific measurements are needed to probe the individual components participating in gas-exchange for a better understanding of pathophysiology, disease progression and response to therapy. In vivo Xenon-129 gas-exchange magnetic resonance imaging (129Xe gas-exchange MRI) has the potential to overcome these challenges. When participants inhale hyperpolarized 129Xe gas, it has different MR spectral properties as a gas, as it diffuses through the alveolar membrane and as it binds to red-blood-cells. 129Xe MR spectroscopy and imaging provides a way to tease out the different anatomic components of gas-exchange simultaneously and provides spatial information about where abnormalities may occur. In this thesis, I developed and applied 129Xe MR spectroscopy and imaging to measure gas-exchange in the lungs alongside other clinical and imaging measurements. I measured 129Xe gas-exchange in asymptomatic congenital heart disease and in prospective, controlled studies of long-COVID. I also developed mathematical tools to model 129Xe MR signals during acquisition and reconstruction. The insights gained from my work underscore the potential for 129Xe gas-exchange MRI biomarkers towards a better understanding of cardiopulmonary disease. My work also provides a way to generate a deeper imaging and physiologic understanding of gas-exchange in vivo in healthy participants and patients with chronic lung and heart disease

    Emerging Power Electronics Technologies for Sustainable Energy Conversion

    Get PDF
    This Special Issue summarizes, in a single reference, timely emerging topics related to power electronics for sustainable energy conversion. Furthermore, at the same time, it provides the reader with valuable information related to open research opportunity niches

    ATR-FTIR Spectroscopy-Linked Chemometrics:A Novel Approach to the Analysis and Control of the Invasive Species Japanese Knotweed

    Get PDF
    Japanese knotweed (Reynoutria japonica), an invasive plant species, causes negative environmental and socio-economic impacts. A female clone in the United Kingdom, its extensive rhizome system enables rapid vegetative spread. Plasticity permits this species to occupy a broad geographic range and survive harsh abiotic conditions. It is notoriously difficult to control with traditional management strategies, which include repetitive herbicide application and costly carbon-intensive rhizome excavation. This problem is complicated by crossbreeding with the closely related species, Giant knotweed (Reynoutria sachalinensis), to give the more vigorous hybrid, Bohemian knotweed (Fallopia x Bohemica) which produces viable seed. These species, hybrids, and backcrosses form a morphologically similar complex known as Japanese knotweed ‘sensu lato’ and are often misidentified. The research herein explores the opportunities offered by advances in the application of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy-linked chemometrics within plant sciences, for the identification and control of knotweed, to enhance our understanding of knotweed biology, and the potential of this technique. ATR-FTIR spectral profiles of Japanese knotweed leaf material and xylem sap samples, which include important biological absorptions due to lipids, proteins, carbohydrates, and nucleic acids, were used to: identify plants from different growing regions highlighting the plasticity of this clonal species; differentiate between related species and hybrids; and predict key physiological characteristics such as hormone concentrations and root water potential. Technical advances were made for the application of ATR-FTIR spectroscopy to plant science, including definition of the environmental factors that exert the most significant influence on spectral profiles, evaluation of sample preparation techniques, and identification of key wavenumbers for prediction of hormone concentrations and abiotic stress. The presented results cement the position of concatenated mid-infrared spectroscopy and machine learning as a powerful approach for the study of plant biology, extending its reach beyond the field of crop science to demonstrate a potential for the discrimination between and control of invasive plant species

    Artificial intelligence for understanding the Hadith

    Get PDF
    My research aims to utilize Artificial Intelligence to model the meanings of Classical Arabic Hadith, which are the reports of the life and teachings of the Prophet Muhammad. The goal is to find similarities and relatedness between Hadith and other religious texts, specifically the Quran. These findings can facilitate downstream tasks, such as Islamic question- answering systems, and enhance understanding of these texts to shed light on new interpretations. To achieve this goal, a well-structured Hadith corpus should be created, with the Matn (Hadith teaching) and Isnad (chain of narrators) segmented. Hence, a preliminary task is conducted to build a segmentation tool using machine learning models that automatically deconstruct the Hadith into Isnad and Matn with 92.5% accuracy. This tool is then used to create a well-structured corpus of the canonical Hadith books. After building the Hadith corpus, Matns are extracted to investigate different methods of representing their meanings. Two main methods are tested: a knowledge-based approach and a deep-learning-based approach. To apply the former, existing Islamic ontologies are enumerated, most of which are intended for the Quran. Since the Quran and the Hadith are in the same domain, the extent to which these ontologies cover the Hadith is examined using a corpus-based evaluation. Results show that the most comprehensive Quran ontology covers only 26.8% of Hadith concepts, and extending it is expensive. Therefore, the second approach is investigated by building and evaluating various deep-learning models for a binary classification task of detecting relatedness between the Hadith and the Quran. Results show that the likelihood of the current models reaching a human- level understanding of such texts remains somewhat elusive

    Evolutionary Reinforcement Learning: A Survey

    Full text link
    Reinforcement learning (RL) is a machine learning approach that trains agents to maximize cumulative rewards through interactions with environments. The integration of RL with deep learning has recently resulted in impressive achievements in a wide range of challenging tasks, including board games, arcade games, and robot control. Despite these successes, there remain several crucial challenges, including brittle convergence properties caused by sensitive hyperparameters, difficulties in temporal credit assignment with long time horizons and sparse rewards, a lack of diverse exploration, especially in continuous search space scenarios, difficulties in credit assignment in multi-agent reinforcement learning, and conflicting objectives for rewards. Evolutionary computation (EC), which maintains a population of learning agents, has demonstrated promising performance in addressing these limitations. This article presents a comprehensive survey of state-of-the-art methods for integrating EC into RL, referred to as evolutionary reinforcement learning (EvoRL). We categorize EvoRL methods according to key research fields in RL, including hyperparameter optimization, policy search, exploration, reward shaping, meta-RL, and multi-objective RL. We then discuss future research directions in terms of efficient methods, benchmarks, and scalable platforms. This survey serves as a resource for researchers and practitioners interested in the field of EvoRL, highlighting the important challenges and opportunities for future research. With the help of this survey, researchers and practitioners can develop more efficient methods and tailored benchmarks for EvoRL, further advancing this promising cross-disciplinary research field

    EXAMINING PROTEIN CONFORMATIONAL DYNAMICS USING COMPUTATIONAL TECHNIQUES: STUDIES ON PHOSPHATIDYLINOSITOL-3-KINASE AND THE SODIUM-IODIDE SYMPORTER

    Get PDF
    Experimental biophysics techniques used to study proteins, polymers of amino acids that comprise most therapeutic targets of human disease, face limitations in their ability to interrogate the continual structural fluctuations exhibited by these macromolecules in the context of their myriad cellular functions. This dissertation aims to illustrate case studies that demonstrate how protein conformational dynamics can be characterized using computational methods, yielding novel insights into their functional regulation and activity. Towards this end, the work presented here describes two specific membrane proteins of therapeutic relevance: Phosphoinositide 3-kinase (PI3Kα), and the Na+/I- symporter (NIS). The PI3KCA gene, encoding the catalytic subunit of the PI3Kα protein that phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to generate phosphatidylinositol-3,4,5-triphosphate (PIP3), is highly mutated in human cancer. As such, a deeper mechanistic understanding of PI3Kα could facilitate the development of novel chemotherapeutic approaches. The second chapter of this dissertation describes molecular dynamics (MD) simulations that were conducted to determine how PI3Kα conformations are influenced by physiological effectors and the nSH2 domain of a regulatory subunit, p85. The results reported here suggest that dynamic allostery plays a role in populating the catalytically competent conformation of PI3Kα. NIS, a thirteen-helix transmembrane protein found in the thyroid and other tissues, transports iodide, a required constituent of thyroid hormones T3 and T4. Despite extensive experimental information and clinical data, many mechanistic details about NIS remain unresolved. The third chapter of this dissertation describes the results of unbiased and enhanced-sampling MD simulations of inwardly and outwardly open models of bound NIS under an enforced ion gradient. Simulations of NIS in the absence or presence of perchlorate are also described. The work presented in this dissertation aims to add to our mechanistic understanding of NIS ion transport and elucidate conformational states that occur between the inward and outward transitions of NIS in the absence and presence of bound Na+ and I- ions, which can provide valuable insight into its physiological activity and inform therapeutic interventions. Taken together, these case studies demonstrate the ability of computational techniques to provide novel insights into the impact of structural dynamics on the functional regulation of therapeutically important biological macromolecules
    • …
    corecore