134 research outputs found

    Longitudinal clustering analysis and prediction of Parkinson\u27s disease progression using radiomics and hybrid machine learning

    Get PDF
    Background: We employed machine learning approaches to (I) determine distinct progression trajectories in Parkinson\u27s disease (PD) (unsupervised clustering task), and (II) predict progression trajectories (supervised prediction task), from early (years 0 and 1) data, making use of clinical and imaging features. Methods: We studied PD-subjects derived from longitudinal datasets (years 0, 1, 2 & 4; Parkinson\u27s Progressive Marker Initiative). We extracted and analyzed 981 features, including motor, non-motor, and radiomics features extracted for each region-of-interest (ROIs: left/right caudate and putamen) using our standardized standardized environment for radiomics analysis (SERA) radiomics software. Segmentation of ROIs on dopamine transposer - single photon emission computed tomography (DAT SPECT) images were performed via magnetic resonance images (MRI). After performing cross-sectional clustering on 885 subjects (original dataset) to identify disease subtypes, we identified optimal longitudinal trajectories using hybrid machine learning systems (HMLS), including principal component analysis (PCA) + K-Means algorithms (KMA) followed by Bayesian information criterion (BIC), Calinski-Harabatz criterion (CHC), and elbow criterion (EC). Subsequently, prediction of the identified trajectories from early year data was performed using multiple HMLSs including 16 Dimension Reduction Algorithms (DRA) and 10 classification algorithms. Results: We identified 3 distinct progression trajectories. Hotelling\u27s t squared test (HTST) showed that the identified trajectories were distinct. The trajectories included those with (I, II) disease escalation (2 trajectories, 27% and 38% of patients) and (III) stable disease (1 trajectory, 35% of patients). For trajectory prediction from early year data, HMLSs including the stochastic neighbor embedding algorithm (SNEA, as a DRA) as well as locally linear embedding algorithm (LLEA, as a DRA), linked with the new probabilistic neural network classifier (NPNNC, as a classifier), resulted in accuracies of 78.4% and 79.2% respectively, while other HMLSs such as SNEA + Lib_SVM (library for support vector machines) and t_SNE (t-distributed stochastic neighbor embedding) + NPNNC resulted in 76.5% and 76.1% respectively. Conclusions: This study moves beyond cross-sectional PD subtyping to clustering of longitudinal disease trajectories. We conclude that combining medical information with SPECT-based radiomics features, and optimal utilization of HMLSs, can identify distinct disease trajectories in PD patients, and enable effective prediction of disease trajectories from early year data

    A Review on Explainable Artificial Intelligence for Healthcare: Why, How, and When?

    Full text link
    Artificial intelligence (AI) models are increasingly finding applications in the field of medicine. Concerns have been raised about the explainability of the decisions that are made by these AI models. In this article, we give a systematic analysis of explainable artificial intelligence (XAI), with a primary focus on models that are currently being used in the field of healthcare. The literature search is conducted following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) standards for relevant work published from 1 January 2012 to 02 February 2022. The review analyzes the prevailing trends in XAI and lays out the major directions in which research is headed. We investigate the why, how, and when of the uses of these XAI models and their implications. We present a comprehensive examination of XAI methodologies as well as an explanation of how a trustworthy AI can be derived from describing AI models for healthcare fields. The discussion of this work will contribute to the formalization of the XAI field.Comment: 15 pages, 3 figures, accepted for publication in the IEEE Transactions on Artificial Intelligenc

    Automatic Autism Spectrum Disorder Detection Using Artificial Intelligence Methods with MRI Neuroimaging: A Review

    Full text link
    Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, the process of diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist the specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We conclude by suggesting future approaches to detecting ASDs using AI techniques and MRI neuroimaging

    Towards Precision Psychiatry: gray Matter Development And Cognition In Adolescence

    Get PDF
    Precision Psychiatry promises a new era of optimized psychiatric diagnosis and treatment through comprehensive, data-driven patient stratification. Among the core requirements towards that goal are: 1) neurobiology-guided preprocessing and analysis of brain imaging data for noninvasive characterization of brain structure and function, and 2) integration of imaging, genomic, cognitive, and clinical data in accurate and interpretable predictive models for diagnosis, and treatment choice and monitoring. In this thesis, we shall touch on specific aspects that fit under these two broad points. First, we investigate normal gray matter development around adolescence, a critical period for the development of psychopathology. For years, the common narrative in human developmental neuroimaging has been that gray matter declines in adolescence. We demonstrate that different MRI-derived gray matter measures exhibit distinct age and sex effects and should not be considered equivalent, as has often been done in the past, but complementary. We show for the first time that gray matter density increases from childhood to young adulthood, in contrast with gray matter volume and cortical thickness, and that females, who are known to have lower gray matter volume than males, have higher density throughout the brain. A custom preprocessing pipeline and a novel high-resolution gray matter parcellation were created to analyze brain scans of 1189 youths collected as part of the Philadelphia Neurodevelopmental Cohort. This work emphasizes the need for future studies combining quantitative histology and neuroimaging to fully understand the biological basis of MRI contrasts and their derived measures. Second, we use the same gray matter measures to assess how well they can predict cognitive performance. We train mass-univariate and multivariate models to show that gray matter volume and density are complementary in their ability to predict performance. We suggest that parcellation resolution plays a big role in prediction accuracy and that it should be tuned separately for each modality for a fair comparison among modalities and for an optimal prediction when combining all modalities. Lastly, we introduce rtemis, an R package for machine learning and visualization, aimed at making advanced data analytics more accessible. Adoption of accurate and interpretable machine learning methods in basic research and medical practice will help advance biomedical science and make precision medicine a reality

    Thirty years of artificial intelligence in medicine (AIME) conferences: A review of research themes

    Get PDF
    Over the past 30 years, the international conference on Artificial Intelligence in MEdicine (AIME) has been organized at different venues across Europe every 2 years, establishing a forum for scientific exchange and creating an active research community. The Artificial Intelligence in Medicine journal has published theme issues with extended versions of selected AIME papers since 1998

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies
    corecore