21,281 research outputs found

    Design of Passive Analog Electronic Circuits Using Hybrid Modified UMDA algorithm

    Get PDF
    Hybrid evolutionary passive analog circuits synthesis method based on modified Univariate Marginal Distribution Algorithm (UMDA) and a local search algorithm is proposed in the paper. The modification of the UMDA algorithm which allows to specify the maximum number of the nodes and the maximum number of the components of the synthesized circuit is proposed. The proposed hybrid approach efficiently reduces the number of the objective function evaluations. The modified UMDA algorithm is used for synthesis of the topology and the local search algorithm is used for determination of the parameters of the components of the designed circuit. As an example the proposed method is applied to a problem of synthesis of the fractional capacitor circuit

    Fault Diagnosis of Hybrid Systems with Dynamic Bayesian Networks and Hybrid Possible Conficts

    Get PDF
    Hybrid systems are very important in our society, we can find them in many engineering fields. They can develop a task by themselves or they can interact with people so they have to work in a nominal and safe state. Model-based Diagnosis (MBD) is a diagnosis branch that bases its decisions in models. This dissertation is placed in the MBD framework with Artificial Intelligence techniques, which is known as DX community. The kind of hybrid systems we focus on have a continuous behaviour commanded by discrete events. There are several works already done in the diagnosis of hybrid systems field. Most of them need to pre-enumerate all the possible modes in the system even if they are never visited during the process. To solve that problem, some authors have presented the Hybrid Bond Graph (HBG) modeling technique, that is an extension of Bond Graphs. HBGs do not need to enumerate all the system modes, they are built as the system visits them at run time. Regarding the faults that can appear in a hybrid system, they can be divided in two main groups: (1) Discrete faults, and (2) parametric or continuous faults. The discrete faults are related to the hybrid nature of the systems while the parametric or continuous faults appear as faults in the system parameters or in the sensors. Both types af faults have not been considered in a unified diagnosis architecture for hybrid systems. The diagnosis process can be divided in three main stages: Fault Detection, Fault Isolation and Fault Identification. Computing the set of Possible Conflicts (PCs) is a compilation technique used in MBD of continuous systems. They provide a decomposition of a system in subsystems with minimal analytical redundancy that makes the isolation process more efficient. They can be used for fault detection and isolation tasks by means of the Fault Signature Matrix (FSM). The FSM is a matrix that relates the different parameters (fault candidates) in a system and the PCs where they are used

    Magnetic-Visual Sensor Fusion-based Dense 3D Reconstruction and Localization for Endoscopic Capsule Robots

    Full text link
    Reliable and real-time 3D reconstruction and localization functionality is a crucial prerequisite for the navigation of actively controlled capsule endoscopic robots as an emerging, minimally invasive diagnostic and therapeutic technology for use in the gastrointestinal (GI) tract. In this study, we propose a fully dense, non-rigidly deformable, strictly real-time, intraoperative map fusion approach for actively controlled endoscopic capsule robot applications which combines magnetic and vision-based localization, with non-rigid deformations based frame-to-model map fusion. The performance of the proposed method is demonstrated using four different ex-vivo porcine stomach models. Across different trajectories of varying speed and complexity, and four different endoscopic cameras, the root mean square surface reconstruction errors 1.58 to 2.17 cm.Comment: submitted to IROS 201
    • …
    corecore