14,575 research outputs found

    Interoperability, Trust Based Information Sharing Protocol and Security: Digital Government Key Issues

    Full text link
    Improved interoperability between public and private organizations is of key significance to make digital government newest triumphant. Digital Government interoperability, information sharing protocol and security are measured the key issue for achieving a refined stage of digital government. Flawless interoperability is essential to share the information between diverse and merely dispersed organisations in several network environments by using computer based tools. Digital government must ensure security for its information systems, including computers and networks for providing better service to the citizens. Governments around the world are increasingly revolving to information sharing and integration for solving problems in programs and policy areas. Evils of global worry such as syndrome discovery and manage, terror campaign, immigration and border control, prohibited drug trafficking, and more demand information sharing, harmonization and cooperation amid government agencies within a country and across national borders. A number of daunting challenges survive to the progress of an efficient information sharing protocol. A secure and trusted information-sharing protocol is required to enable users to interact and share information easily and perfectly across many diverse networks and databases globally.Comment: 20 page

    MARINE: Man-in-the-middle attack resistant trust model IN connEcted vehicles

    Get PDF
    Vehicular Ad-hoc NETwork (VANET), a novel technology holds a paramount importance within the transportation domain due to its abilities to increase traffic efficiency and safety. Connected vehicles propagate sensitive information which must be shared with the neighbors in a secure environment. However, VANET may also include dishonest nodes such as Man-in-the-Middle (MiTM) attackers aiming to distribute and share malicious content with the vehicles, thus polluting the network with compromised information. In this regard, establishing trust among connected vehicles can increase security as every participating vehicle will generate and propagate authentic, accurate and trusted content within the network. In this paper, we propose a novel trust model, namely, Man-in-the-middle Attack Resistance trust model IN connEcted vehicles (MARINE), which identifies dishonest nodes performing MiTM attacks in an efficient way as well as revokes their credentials. Every node running MARINE system first establishes trust for the sender by performing multi-dimensional plausibility checks. Once the receiver verifies the trustworthiness of the sender, the received data is then evaluated both directly and indirectly. Extensive simulations are carried out to evaluate the performance and accuracy of MARINE rigorously across three MiTM attacker models and the bench-marked trust model. Simulation results show that for a network containing 35% MiTM attackers, MARINE outperforms the state of the art trust model by 15%, 18%, and 17% improvements in precision, recall and F-score, respectively.N/A

    CRiBAC: Community-centric role interaction based access control model

    Get PDF
    As one of the most efficient solutions to complex and large-scale problems, multi-agent cooperation has been in the limelight for the past few decades. Recently, many research projects have focused on context-aware cooperation to dynamically provide complex services. As cooperation in the multi-agent systems (MASs) becomes more common, guaranteeing the security of such cooperation takes on even greater importance. However, existing security models do not reflect the agents' unique features, including cooperation and context-awareness. In this paper, we propose a Community-based Role interaction-based Access Control model (CRiBAC) to allow secure cooperation in MASs. To do this, we refine and extend our preliminary RiBAC model, which was proposed earlier to support secure interactions among agents, by introducing a new concept of interaction permission, and then extend it to CRiBAC to support community-based cooperation among agents. We analyze potential problems related to interaction permissions and propose two approaches to address them. We also propose an administration model to facilitate administration of CRiBAC policies. Finally, we present the implementation of a prototype system based on a sample scenario to assess the proposed work and show its feasibility. © 2012 Elsevier Ltd. All rights reserved

    Access Control Mechanisms in Named Data Networks:A Comprehensive Survey

    Get PDF
    Information-Centric Networking (ICN) has recently emerged as a prominent candidate for the Future Internet Architecture (FIA) that addresses existing issues with the host-centric communication model of the current TCP/IP-based Internet. Named Data Networking (NDN) is one of the most recent and active ICN architectures that provides a clean slate approach for Internet communication. NDN provides intrinsic content security where security is directly provided to the content instead of communication channel. Among other security aspects, Access Control (AC) rules specify the privileges for the entities that can access the content. In TCP/IP-based AC systems, due to the client-server communication model, the servers control which client can access a particular content. In contrast, ICN-based networks use content names to drive communication and decouple the content from its original location. This phenomenon leads to the loss of control over the content causing different challenges for the realization of efficient AC mechanisms. To date, considerable efforts have been made to develop various AC mechanisms in NDN. In this paper, we provide a detailed and comprehensive survey of the AC mechanisms in NDN. We follow a holistic approach towards AC in NDN where we first summarize the ICN paradigm, describe the changes from channel-based security to content-based security and highlight different cryptographic algorithms and security protocols in NDN. We then classify the existing AC mechanisms into two main categories: Encryption-based AC and Encryption-independent AC. Each category has different classes based on the working principle of AC (e.g., Attribute-based AC, Name-based AC, Identity-based AC, etc). Finally, we present the lessons learned from the existing AC mechanisms and identify the challenges of NDN-based AC at large, highlighting future research directions for the community.Comment: This paper has been accepted for publication by the ACM Computing Surveys. The final version will be published by the AC

    Policy enforcement in cloud computing

    Get PDF
    Cloud Computing is an emerging technology, providing attractive way of hosting and delivering services over the Internet. Many organizations and individuals are utilizing Cloud services to share information and collaborate with partners. However, Cloud provides abstraction over the underlying physical infrastructure to the customers, that raises information security concerns, while storing data in a virtualized environment without having physical access to it. Additionally, certain standards have been issued to provide interoperability between users and various distributed systems(including Cloud infrastructures), in a standardized way. However, implementation and interoperability issues still exist and introduce new challenges. This thesis explores the feasibility of securing data in a cloud context, using existing standards and specifications, while retaining the benefits of the Cloud. The thesis provides a view on increasing security concerns of moving to the cloud and sharing data over it. First, we define security and privacy requirements for the data stored in the Cloud. Based on these requirements, we propose the requirements for an access control system in the Cloud. Furthermore, we evaluate the existing work in the area of currently available access control systems and mechanisms for secure data sharing over the Cloud, mostly focusing on policy enforcement and access control characteristics. Moreover, we determine existing mechanisms and standards to implement secure data sharing and collaborative systems over the Cloud. We propose an architecture supporting secure data sharing over the untrusted Cloud environment, based on our findings. The architecture ensures policy based access control inside and outside Cloud, while allowing the benefits of Cloud Computing to be utilized. We discuss the components involved in the architecture and their design considerations. To validate the proposed architecture, we construct the proof of concept prototype. We present a novel approach for implementing policy based access control, by achieving interoperability between existing standards and addressing certain issues, while constructing the system prototype. Furthermore, we deploy our solution in the Cloud and perform the performance tests to evaluate the performance of the system. Finally, we perform a case study by utilizing our system in a real-life scenario. To do this we slightly tailor our solution to meet specific needs. Overall, this thesis provides a solid foundation for the policy enforcement and access control mechanisms in the Cloud-based systems and motivates further work within this field. Cloud Computing is an emerging technology, providing attractive way of hosting and delivering services over the Internet. Many organizations and individuals are utilizing Cloud services to share information and collaborate with partners. However, Cloud provides abstraction over the underlying physical infrastructure to the customers, that raises information security concerns, while storing data in a virtualized environment without having physical access to it. Additionally, certain standards have been issued to provide interoperability between users and various distributed systems(including Cloud infrastructures), in a standardized way. However, implementation and interoperability issues still exist and introduce new challenges. This thesis explores the feasibility of securing data in a cloud context, using existing standards and specifications, while retaining the benefits of the Cloud. The thesis provides a view on increasing security concerns of moving to the cloud and sharing data over it. First, we define security and privacy requirements for the data stored in the Cloud. Based on these requirements, we propose the requirements for an access control system in the Cloud. Furthermore, we evaluate the existing work in the area of currently available access control systems and mechanisms for secure data sharing over the Cloud, mostly focusing on policy enforcement and access control characteristics. Moreover, we determine existing mechanisms and standards to implement secure data sharing and collaborative systems over the Cloud. We propose an architecture supporting secure data sharing over the untrusted Cloud environment, based on our findings. The architecture ensures policy based access control inside and outside Cloud, while allowing the benefits of Cloud Computing to be utilized. We discuss the components involved in the architecture and their design considerations. To validate the proposed architecture, we construct the proof of concept prototype. We present a novel approach for implementing policy based access control, by achieving interoperability between existing standards and addressing certain issues, while constructing the system prototype. Furthermore, we deploy our solution in the Cloud and perform the performance tests to evaluate the performance of the system. Finally, we perform a case study by utilizing our system in a real-life scenario. To do this we slightly tailor our solution to meet specific needs. Overall, this thesis provides a solid foundation for the policy enforcement and access control mechanisms in the Cloud-based systems and motivates further work within this field
    • …
    corecore