2,710 research outputs found

    A Hybrid Data Compression Scheme for Power Reduction in Wireless Sensors for IoT

    Get PDF
    IEEE Transactions on Biomedical Circuits and SystemsPP991-1

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application

    Resource Management for Edge Computing in Internet of Things (IoT)

    Get PDF
    Die große Anzahl an Geräten im Internet der Dinge (IoT) und deren kontinuierliche Datensammlungen führen zu einem rapiden Wachstum der gesammelten Datenmenge. Die Daten komplett mittels zentraler Cloud Server zu verarbeiten ist ineffizient und zum Teil sogar unmöglich oder unnötig. Darum wird die Datenverarbeitung an den Rand des Netzwerks verschoben, was zu den Konzepten des Edge Computings geführt hat. Informationsverarbeitung nahe an der Datenquelle (z.B. auf Gateways und Edge Geräten) reduziert nicht nur die hohe Arbeitslast zentraler Server und Netzwerke, sondern verringer auch die Latenz für Echtzeitanwendungen, da die potentiell unzuverlässige Kommunikation zu Cloud Servern mit ihrer unvorhersehbaren Netzwerklatenz vermieden wird. Aktuelle IoT Architekturen verwenden Gateways, um anwendungsspezifische Verbindungen zu IoT Geräten herzustellen. In typischen Konfigurationen teilen sich mehrere IoT Edge Geräte ein IoT Gateway. Wegen der begrenzten verfügbaren Bandbreite und Rechenkapazität eines IoT Gateways muss die Servicequalität (SQ) der verbundenen IoT Edge Geräte über die Zeit angepasst werden. Nicht nur um die Anforderungen der einzelnen Nutzer der IoT Geräte zu erfüllen, sondern auch um die SQBedürfnisse der anderen IoT Edge Geräte desselben Gateways zu tolerieren. Diese Arbeit untersucht zuerst essentielle Technologien für IoT und existierende Trends. Dabei werden charakteristische Eigenschaften von IoT für die Embedded Domäne, sowie eine umfassende IoT Perspektive für Eingebettete Systeme vorgestellt. Mehrere Anwendungen aus dem Gesundheitsbereich werden untersucht und implementiert, um ein Model für deren Datenverarbeitungssoftware abzuleiten. Dieses Anwendungsmodell hilft bei der Identifikation verschiedener Betriebsmodi. IoT Systeme erwarten von den Edge Geräten, dass sie mehrere Betriebsmodi unterstützen, um sich während des Betriebs an wechselnde Szenarien anpassen zu können. Z.B. Energiesparmodi bei geringen Batteriereserven trotz gleichzeitiger Aufrechterhaltung der kritischen Funktionalität oder einen Modus, um die Servicequalität auf Wunsch des Nutzers zu erhöhen etc. Diese Modi verwenden entweder verschiedene Auslagerungsschemata (z.B. die übertragung von Rohdaten, von partiell bearbeiteten Daten, oder nur des finalen Ergebnisses) oder verschiedene Servicequalitäten. Betriebsmodi unterscheiden sich in ihren Ressourcenanforderungen sowohl auf dem Gerät (z.B. Energieverbrauch), wie auch auf dem Gateway (z.B. Kommunikationsbandbreite, Rechenleistung, Speicher etc.). Die Auswahl des besten Betriebsmodus für Edge Geräte ist eine Herausforderung in Anbetracht der begrenzten Ressourcen am Rand des Netzwerks (z.B. Bandbreite und Rechenleistung des gemeinsamen Gateways), diverser Randbedingungen der IoT Edge Geräte (z.B. Batterielaufzeit, Servicequalität etc.) und der Laufzeitvariabilität am Rand der IoT Infrastruktur. In dieser Arbeit werden schnelle und effiziente Auswahltechniken für Betriebsmodi entwickelt und präsentiert. Wenn sich IoT Geräte in der Reichweite mehrerer Gateways befinden, ist die Verwaltung der gemeinsamen Ressourcen und die Auswahl der Betriebsmodi für die IoT Geräte sogar noch komplexer. In dieser Arbeit wird ein verteilter handelsorientierter Geräteverwaltungsmechanismus für IoT Systeme mit mehreren Gateways präsentiert. Dieser Mechanismus zielt auf das kombinierte Problem des Bindens (d.h. ein Gateway für jedes IoT Gerät bestimmen) und der Allokation (d.h. die zugewiesenen Ressourcen für jedes Gerät bestimmen) ab. Beginnend mit einer initialen Konfiguration verhandeln und kommunizieren die Gateways miteinander und migrieren IoT Geräte zwischen den Gateways, wenn es den Nutzen für das Gesamtsystem erhöht. In dieser Arbeit werden auch anwendungsspezifische Optimierungen für IoT Geräte vorgestellt. Drei Anwendungen für den Gesundheitsbereich wurden realisiert und für tragbare IoT Geräte untersucht. Es wird auch eine neuartige Kompressionsmethode vorgestellt, die speziell für IoT Anwendungen geeignet ist, die Bio-Signale für Gesundheitsüberwachungen verarbeiten. Diese Technik reduziert die zu übertragende Datenmenge des IoT Gerätes, wodurch die Ressourcenauslastung auf dem Gerät und dem gemeinsamen Gateway reduziert wird. Um die vorgeschlagenen Techniken und Mechanismen zu evaluieren, wurden einige Anwendungen auf IoT Plattformen untersucht, um ihre Parameter, wie die Ausführungszeit und Ressourcennutzung, zu bestimmen. Diese Parameter wurden dann in einem Rahmenwerk verwendet, welches das IoT Netzwerk modelliert, die Interaktion zwischen Geräten und Gateway erfasst und den Kommunikationsoverhead sowie die erreichte Batterielebenszeit und Servicequalität der Geräte misst. Die Algorithmen zur Auswahl der Betriebsmodi wurden zusätzlich auf IoT Plattformen implementiert, um ihre Overheads bzgl. Ausführungszeit und Speicherverbrauch zu messen

    Selected Papers from the First International Symposium on Future ICT (Future-ICT 2019) in Conjunction with 4th International Symposium on Mobile Internet Security (MobiSec 2019)

    Get PDF
    The International Symposium on Future ICT (Future-ICT 2019) in conjunction with the 4th International Symposium on Mobile Internet Security (MobiSec 2019) was held on 17–19 October 2019 in Taichung, Taiwan. The symposium provided academic and industry professionals an opportunity to discuss the latest issues and progress in advancing smart applications based on future ICT and its relative security. The symposium aimed to publish high-quality papers strictly related to the various theories and practical applications concerning advanced smart applications, future ICT, and related communications and networks. It was expected that the symposium and its publications would be a trigger for further related research and technology improvements in this field
    corecore