515 research outputs found

    Device-to-Device Communications in the Millimeter Wave Band: A Novel Distributed Mechanism

    Full text link
    In spite of its potential advantages, the large-scale implementation of the device-to-device (D2D) communications has yet to be realized, mainly due to severe interference and lack of enough bandwidth in the microwave (μ\muW) band. Recently, exploiting the millimeter wave (mmW) band for D2D communications has attracted considerable attention as a potential solution to these challenges. However, its severe sensitivity to blockage along with its directional nature make the utilization of the mmW band a challenging task as it requires line-of-sight (LOS) link detection and careful beam alignment between the D2D transceivers. In this paper, we propose a novel distributed mechanism which enables the D2D devices to discover unblocked LOS links for the mmW band communication. Moreover, as such LOS links are not always available, the proposed mechanism allows the D2D devices to switch to the μ\muW band if necessary. In addition, the proposed mechanism detects the direction of the LOS links to perform the beam alignment. We have used tools from stochastic geometry to evaluate the performance of the proposed mechanism in terms of the signal-to-interference-plus-noise ratio (SINR) coverage probability. The performance of the proposed algorithm is then compared to the one of the single band (i.e., μ\muW/mmW) communication. The simulation results show that the proposed mechanism considerably outperforms the single band communication.Comment: 6 Pages, 6 Figures, Accepted for presentation in Wireless Telecommunication Symposium (WTS'18

    Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT

    Get PDF
    Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as device-to-device (D2D) caching helpers. With the goal to improve reliability of high-rate millimeter-wave (mmWave) data connections, we introduce the alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability

    Wireless Powered Dense Cellular Networks: How Many Small Cells Do We Need?

    Get PDF
    This paper focuses on wireless powered 5G dense cellular networks, where base station (BS) delivers energy to user equipment (UE) via the microwave radiation in sub-6 GHz or millimeter wave (mmWave) frequency, and UE uses the harvested energy for uplink information transmission. By addressing the impacts of employing different number of antennas and bandwidths at lower and higher frequencies, we evaluate the amount of harvested energy and throughput in such networks. Based on the derived results, we obtain the required small cell density to achieve an expected level of harvested energy or throughput. Also, we obtain that when the ratio of the number of sub-6 GHz BSs to that of the mmWave BSs is lower than a given threshold, UE harvests more energy from a mmWave BS than a sub-6 GHz BS. We find how many mmWave small cells are needed to perform better than the sub-6 GHz small cells from the perspectives of harvested energy and throughput. Our results reveal that the amount of harvested energy from the mmWave tier can be comparable to the sub-6 GHz counterpart in the dense scenarios. For the same tier scale, mmWave tier can achieve higher throughput. Furthermore, the throughput gap between different mmWave frequencies increases with the mmWave BS density.Comment: pages 1-14, accepted by IEEE Journal on Selected Areas in Communication
    • …
    corecore