4,369 research outputs found

    Task scheduling techniques for asymmetric multi-core systems

    Get PDF
    As performance and energy efficiency have become the main challenges for next-generation high-performance computing, asymmetric multi-core architectures can provide solutions to tackle these issues. Parallel programming models need to be able to suit the needs of such systems and keep on increasing the application’s portability and efficiency. This paper proposes two task scheduling approaches that target asymmetric systems. These dynamic scheduling policies reduce total execution time either by detecting the longest or the critical path of the dynamic task dependency graph of the application, or by finding the earliest executor of a task. They use dynamic scheduling and information discoverable during execution, fact that makes them implementable and functional without the need of off-line profiling. In our evaluation we compare these scheduling approaches with two existing state-of the art heterogeneous schedulers and we track their improvement over a FIFO baseline scheduler. We show that the heterogeneous schedulers improve the baseline by up to 1.45 in a real 8-core asymmetric system and up to 2.1 in a simulated 32-core asymmetric chip.This work has been supported by the Spanish Government (SEV2015-0493), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), by the RoMoL ERC Advanced Grant (GA 321253) and the European HiPEAC Network of Excellence. The Mont-Blanc project receives funding from the EU’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 610402 and from the EU’s H2020 Framework Programme (H2020/2014-2020) under grant agreement no 671697. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M. Casas is supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Contract 2013 BP B 00243).Peer ReviewedPostprint (author's final draft

    Two stage Indian food grain supply chain network transportation-allocation model

    Get PDF
    This paper investigates the food grain supply chain, transportation allocation problem of Indian Public Distribution System (PDS). The different activities of Indian food grain supply chain are procurements, storage, movement, transportation and distribution. We have developed a mixed integer nonlinear programming model (MINLP) to minimize the transportation, inventory and operational cost of shipping food grains from the cluster of procurement centers of producing states to the consuming state warehouses. A recently developed chemical reaction optimization (CRO) algorithm is used for testing the model which gives the superior computational performance compared to other metaheuristics

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    Chemical reaction optimization for task scheduling in grid computing

    Get PDF
    Grid computing solves high performance and high-throughput computing problems through sharing resources ranging from personal computers to supercomputers distributed around the world. One of the major problems is task scheduling, i.e., allocating tasks to resources. In addition to Makespan and Flowtime, we also take reliability of resources into account, and task scheduling is formulated as an optimization problem with three objectives. This is an NP-hard problem, and thus, metaheuristic approaches are employed to find the optimal solutions. In this paper, several versions of the Chemical Reaction Optimization (CRO) algorithm are proposed for the grid scheduling problem. CRO is a population-based metaheuristic inspired by the interactions between molecules in a chemical reaction. We compare these CRO methods with four other acknowledged metaheuristics on a wide range of instances. Simulation results show that the CRO methods generally perform better than existing methods and performance improvement is especially significant in large-scale applications. © 2011 IEEE.published_or_final_versio

    Bulk wheat transportation and storage problem of public distribution system

    Get PDF
    This research investigates the multi-period multi-modal bulk wheat transportation and storage problem in a two-stage supply chain network of Public Distribution System (PDS). The bulk transportation and storage can significantly curtail the transit and storage losses of food grains, which leads to substantial cost savings. A mixed integer non-linear programming model (MINLP) is developed after studying the Indian wheat supply chain scenario, where the objective is to minimize the transportation, storage and operational cost of the food grain incurred for efficient transfer of wheat from producing states to consuming states. The cost minimization of Indian food grain supply chain is a very complex and challenging problem because of the involvement of the many entities and their constraints such as seasonal procurement, limited scientific storages, varying demand, mode of transportation and vehicle capacity constraints. To address this complex and challenging problem of food grain supply chain, we have proposed the novel variant of Chemical Reaction Optimization (CRO) algorithm which combines the features of CRO and Tabu search (TS) and named it as a hybrid CROTS algorithm (Chemical reaction optimization combined with Tabu Search). The numerous problems with different sizes are solved using the proposed algorithm and obtained results have been compared with CRO. The comparative study reveals that the proposed CROTS algorithm offers a better solution in less computational time than CRO algorithm and the dominance of CROTS algorithm over the CRO algorithm is demonstrated through statistical analysis

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Optimal Service Provisioning in IoT Fog-based Environment for QoS-aware Delay-sensitive Application

    Full text link
    This paper addresses the escalating challenges posed by the ever-increasing data volume, velocity, and the demand for low-latency applications, driven by the proliferation of smart devices and Internet of Things (IoT) applications. To mitigate service delay and enhance Quality of Service (QoS), we introduce a hybrid optimization of Particle Swarm (PSO) and Chemical Reaction (CRO) to improve service delay in FogPlan, an offline framework that prioritizes QoS and enables dynamic fog service deployment. The method optimizes fog service allocation based on incoming traffic to each fog node, formulating it as an Integer Non-Linear Programming (INLP) problem, considering various service attributes and costs. Our proposed algorithm aims to minimize service delay and QoS degradation. The evaluation using real MAWI Working Group traffic data demonstrates a substantial 29.34% reduction in service delay, a 66.02% decrease in service costs, and a noteworthy 50.15% reduction in delay violations compared to the FogPlan framework

    Classification and Performance Study of Task Scheduling Algorithms in Cloud Computing Environment

    Get PDF
    Cloud computing is becoming very common in recent years and is growing rapidly due to its attractive benefits and features such as resource pooling, accessibility, availability, scalability, reliability, cost saving, security, flexibility, on-demand services, pay-per-use services, use from anywhere, quality of service, resilience, etc. With this rapid growth of cloud computing, there may exist too many users that require services or need to execute their tasks simultaneously by resources provided by service providers. To get these services with the best performance, and minimum cost, response time, makespan, effective use of resources, etc. an intelligent and efficient task scheduling technique is required and considered as one of the main and essential issues in the cloud computing environment. It is necessary for allocating tasks to the proper cloud resources and optimizing the overall system performance. To this end, researchers put huge efforts to develop several classes of scheduling algorithms to be suitable for the various computing environments and to satisfy the needs of the various types of individuals and organizations. This research article provides a classification of proposed scheduling strategies and developed algorithms in cloud computing environment along with the evaluation of their performance. A comparison of the performance of these algorithms with existing ones is also given. Additionally, the future research work in the reviewed articles (if available) is also pointed out. This research work includes a review of 88 task scheduling algorithms in cloud computing environment distributed over the seven scheduling classes suggested in this study. Each article deals with a novel scheduling technique and the performance improvement it introduces compared with previously existing task scheduling algorithms. Keywords: Cloud computing, Task scheduling, Load balancing, Makespan, Energy-aware, Turnaround time, Response time, Cost of task, QoS, Multi-objective. DOI: 10.7176/IKM/12-5-03 Publication date:September 30th 2022
    • …
    corecore