6,500 research outputs found

    Structure Learning in Graphical Modeling

    Full text link
    A graphical model is a statistical model that is associated to a graph whose nodes correspond to variables of interest. The edges of the graph reflect allowed conditional dependencies among the variables. Graphical models admit computationally convenient factorization properties and have long been a valuable tool for tractable modeling of multivariate distributions. More recently, applications such as reconstructing gene regulatory networks from gene expression data have driven major advances in structure learning, that is, estimating the graph underlying a model. We review some of these advances and discuss methods such as the graphical lasso and neighborhood selection for undirected graphical models (or Markov random fields), and the PC algorithm and score-based search methods for directed graphical models (or Bayesian networks). We further review extensions that account for effects of latent variables and heterogeneous data sources

    algcomparison: Comparing the Performance of Graphical Structure Learning Algorithms with TETRAD

    Full text link
    In this report we describe a tool for comparing the performance of graphical causal structure learning algorithms implemented in the TETRAD freeware suite of causal analysis methods. Currently the tool is available as package in the TETRAD source code (written in Java). Simulations can be done varying the number of runs, sample sizes, and data modalities. Performance on this simulated data can then be compared for a number of algorithms, with parameters varied and with performance statistics as selected, producing a publishable report. The package presented here may also be used to compare structure learning methods across platforms and programming languages, i.e., to compare algorithms implemented in TETRAD with those implemented in MATLAB, Python, or R

    Causal Structure Learning

    Full text link
    Graphical models can represent a multivariate distribution in a convenient and accessible form as a graph. Causal models can be viewed as a special class of graphical models that not only represent the distribution of the observed system but also the distributions under external interventions. They hence enable predictions under hypothetical interventions, which is important for decision making. The challenging task of learning causal models from data always relies on some underlying assumptions. We discuss several recently proposed structure learning algorithms and their assumptions, and compare their empirical performance under various scenarios.Comment: to appear in `Annual Review of Statistics and Its Application', 30 page

    Latent Variable Discovery Using Dependency Patterns

    Full text link
    The causal discovery of Bayesian networks is an active and important research area, and it is based upon searching the space of causal models for those which can best explain a pattern of probabilistic dependencies shown in the data. However, some of those dependencies are generated by causal structures involving variables which have not been measured, i.e., latent variables. Some such patterns of dependency "reveal" themselves, in that no model based solely upon the observed variables can explain them as well as a model using a latent variable. That is what latent variable discovery is based upon. Here we did a search for finding them systematically, so that they may be applied in latent variable discovery in a more rigorous fashion

    Robust causal structure learning with some hidden variables

    Full text link
    We introduce a new method to estimate the Markov equivalence class of a directed acyclic graph (DAG) in the presence of hidden variables, in settings where the underlying DAG among the observed variables is sparse, and there are a few hidden variables that have a direct effect on many of the observed ones. Building on the so-called low rank plus sparse framework, we suggest a two-stage approach which first removes the effect of the hidden variables, and then estimates the Markov equivalence class of the underlying DAG under the assumption that there are no remaining hidden variables. This approach is consistent in certain high-dimensional regimes and performs favourably when compared to the state of the art, both in terms of graphical structure recovery and total causal effect estimation

    Permutation-based Causal Inference Algorithms with Interventions

    Full text link
    Learning directed acyclic graphs using both observational and interventional data is now a fundamentally important problem due to recent technological developments in genomics that generate such single-cell gene expression data at a very large scale. In order to utilize this data for learning gene regulatory networks, efficient and reliable causal inference algorithms are needed that can make use of both observational and interventional data. In this paper, we present two algorithms of this type and prove that both are consistent under the faithfulness assumption. These algorithms are interventional adaptations of the Greedy SP algorithm and are the first algorithms using both observational and interventional data with consistency guarantees. Moreover, these algorithms have the advantage that they are nonparametric, which makes them useful also for analyzing non-Gaussian data. In this paper, we present these two algorithms and their consistency guarantees, and we analyze their performance on simulated data, protein signaling data, and single-cell gene expression data

    Combining Linear Non-Gaussian Acyclic Model with Logistic Regression Model for Estimating Causal Structure from Mixed Continuous and Discrete Data

    Full text link
    Estimating causal models from observational data is a crucial task in data analysis. For continuous-valued data, Shimizu et al. have proposed a linear acyclic non-Gaussian model to understand the data generating process, and have shown that their model is identifiable when the number of data is sufficiently large. However, situations in which continuous and discrete variables coexist in the same problem are common in practice. Most existing causal discovery methods either ignore the discrete data and apply a continuous-valued algorithm or discretize all the continuous data and then apply a discrete Bayesian network approach. These methods possibly loss important information when we ignore discrete data or introduce the approximation error due to discretization. In this paper, we define a novel hybrid causal model which consists of both continuous and discrete variables. The model assumes: (1) the value of a continuous variable is a linear function of its parent variables plus a non-Gaussian noise, and (2) each discrete variable is a logistic variable whose distribution parameters depend on the values of its parent variables. In addition, we derive the BIC scoring function for model selection. The new discovery algorithm can learn causal structures from mixed continuous and discrete data without discretization. We empirically demonstrate the power of our method through thorough simulations

    Detecting Causal Relations in the Presence of Unmeasured Variables

    Full text link
    The presence of latent variables can greatly complicate inferences about causal relations between measured variables from statistical data. In many cases, the presence of latent variables makes it impossible to determine for two measured variables A and B, whether A causes B, B causes A, or there is some common cause. In this paper I present several theorems that state conditions under which it is possible to reliably infer the causal relation between two measured variables, regardless of whether latent variables are acting or not.Comment: Appears in Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence (UAI1991

    A Robust Independence Test for Constraint-Based Learning of Causal Structure

    Full text link
    Constraint-based (CB) learning is a formalism for learning a causal network with a database D by performing a series of conditional-independence tests to infer structural information. This paper considers a new test of independence that combines ideas from Bayesian learning, Bayesian network inference, and classical hypothesis testing to produce a more reliable and robust test. The new test can be calculated in the same asymptotic time and space required for the standard tests such as the chi-squared test, but it allows the specification of a prior distribution over parameters and can be used when the database is incomplete. We prove that the test is correct, and we demonstrate empirically that, when used with a CB causal discovery algorithm with noninformative priors, it recovers structural features more reliably and it produces networks with smaller KL-Divergence, especially as the number of nodes increases or the number of records decreases. Another benefit is the dramatic reduction in the probability that a CB algorithm will stall during the search, providing a remedy for an annoying problem plaguing CB learning when the database is small.Comment: Appears in Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI2003

    A Survey on Social Media Anomaly Detection

    Full text link
    Social media anomaly detection is of critical importance to prevent malicious activities such as bullying, terrorist attack planning, and fraud information dissemination. With the recent popularity of social media, new types of anomalous behaviors arise, causing concerns from various parties. While a large amount of work have been dedicated to traditional anomaly detection problems, we observe a surge of research interests in the new realm of social media anomaly detection. In this paper, we present a survey on existing approaches to address this problem. We focus on the new type of anomalous phenomena in the social media and review the recent developed techniques to detect those special types of anomalies. We provide a general overview of the problem domain, common formulations, existing methodologies and potential directions. With this work, we hope to call out the attention from the research community on this challenging problem and open up new directions that we can contribute in the future.Comment: 23 page
    • …
    corecore