1,948 research outputs found

    Self learning neuro-fuzzy modeling using hybrid genetic probabilistic approach for engine air/fuel ratio prediction

    Get PDF
    Machine Learning is concerned in constructing models which can learn and make predictions based on data. Rule extraction from real world data that are usually tainted with noise, ambiguity, and uncertainty, automatically requires feature selection. Neuro-Fuzzy system (NFS) which is known with its prediction performance has the difficulty in determining the proper number of rules and the number of membership functions for each rule. An enhanced hybrid Genetic Algorithm based Fuzzy Bayesian classifier (GA-FBC) was proposed to help the NFS in the rule extraction. Feature selection was performed in the rule level overcoming the problems of the FBC which depends on the frequency of the features leading to ignore the patterns of small classes. As dealing with a real world problem such as the Air/Fuel Ratio (AFR) prediction, a multi-objective problem is adopted. The GA-FBC uses mutual information entropy, which considers the relevance between feature attributes and class attributes. A fitness function is proposed to deal with multi-objective problem without weight using a new composition method. The model was compared to other learning algorithms for NFS such as Fuzzy c-means (FCM) and grid partition algorithm. Predictive accuracy and the complexity of the Fuzzy Rule Base System (FRBS) including number of rules and number of terms in each rule were taken as terms of evaluation. It was also compared to the original GA-FBC depending on the frequency not on Mutual Information (MI). Experimental results using Air/Fuel Ratio (AFR) data sets show that the new model participates in decreasing the average number of attributes in the rule and sometimes in increasing the average performance compared to other models. This work facilitates in achieving a self-generating FRBS from real data. The GA-FBC can be used as a new direction in machine learning research. This research contributes in controlling automobile emissions in helping the reduction of one of the most causes of pollution to produce greener environment

    Microservices and Machine Learning Algorithms for Adaptive Green Buildings

    Get PDF
    In recent years, the use of services for Open Systems development has consolidated and strengthened. Advances in the Service Science and Engineering (SSE) community, promoted by the reinforcement of Web Services and Semantic Web technologies and the presence of new Cloud computing techniques, such as the proliferation of microservices solutions, have allowed software architects to experiment and develop new ways of building open and adaptable computer systems at runtime. Home automation, intelligent buildings, robotics, graphical user interfaces are some of the social atmosphere environments suitable in which to apply certain innovative trends. This paper presents a schema for the adaptation of Dynamic Computer Systems (DCS) using interdisciplinary techniques on model-driven engineering, service engineering and soft computing. The proposal manages an orchestrated microservices schema for adapting component-based software architectural systems at runtime. This schema has been developed as a three-layer adaptive transformation process that is supported on a rule-based decision-making service implemented by means of Machine Learning (ML) algorithms. The experimental development was implemented in the Solar Energy Research Center (CIESOL) applying the proposed microservices schema for adapting home architectural atmosphere systems on Green Buildings

    Review of Machine Learning Approaches In Fault Diagnosis applied to IoT System

    Get PDF
    International audienceWith increasing complex systems, low production costs, and changing technologies, for this reason, the automatic fault diagnosis using artificial intelligence (AI) techniques is more in more applied. In addition, with the emergence of the use of reconfigurable systems, AI can assist in self-maintenance of complex systems. The purpose of this article is to summarize the diagnosis research of systems using AI approaches and examine their application particularly in the field of diagnosis of complex systems. It covers articles published from 2002 to 2018 using Machine Learning tools for fault diagnosis in industrial systems

    A Clinical Prognostic Framework for Classifying Severe Liver Disorders (SLDs) and Lungs’ Vulnerability to Virus

    Get PDF
    Most severe liver diseases (SLDs) are attributed to increased risk for cancer, and cirrhosis, through which the manifestation of fibrotic tissues and scars tends to affect liver function The role of liver is indispensable, as inner organ performing services that ranges from metabolism, immune guide, energy producer and digestive aid, just to mention a few. Prevalence of classification problem and the need for automated prognosis is the continual drive to apply data mining techniques and/or machine learning algorithms in medical diagnosis and clinical support systems. Computational scientists and researchers in the field of artificial intelligence have recorded notable efforts with existing methods/models for diagnosis or prognosis, yet their effectiveness and functional performance is not without drawback due to ambiguity of medical information and selected features in patients’ data to tell the future course. In this paper, a novel hybridized machine learning model was provided (Fuzzy c-BC) for clinical classification of Severe Liver Disorders (SLDs) and to determine Lungs Vulnerability (LV) to virus; by incorporating individual strength of fuzzy cluster means (FCM) and naive Bayes classifier (NBC) for projecting future course of every categorized liver disease (LD) and its implication to aggravate lungs infection if preventive measures are not taken in timely manner

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field

    Artificial Intelligence Techniques for Cancer Detection and Classification: Review Study

    Get PDF
    Cancer is the general name for a group of more than 100 diseases. Although cancer includes different types of diseases, they all start because abnormal cells grow out of control. Without treatment, cancer can cause serious health problems and even loss of life. Early detection of cancer may reduce mortality and morbidity. This paper presents a review of the detection methods for lung, breast, and brain cancers. These methods used for diagnosis include artificial intelligence techniques, such as support vector machine neural network, artificial neural network, fuzzy logic, and adaptive neuro-fuzzy inference system, with medical imaging like X-ray, ultrasound, magnetic resonance imaging, and computed tomography scan images. Imaging techniques are the most important approach for precise diagnosis of human cancer. We investigated all these techniques to identify a method that can provide superior accuracy and determine the best medical images for use in each type of cancer

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed
    • …
    corecore