11,730 research outputs found

    Adaptive planning for distributed systems using goal accomplishment tracking

    Get PDF
    Goal accomplishment tracking is the process of monitoring the progress of a task or series of tasks towards completing a goal. Goal accomplishment tracking is used to monitor goal progress in a variety of domains, including workflow processing, teleoperation and industrial manufacturing. Practically, it involves the constant monitoring of task execution, analysis of this data to determine the task progress and notification of interested parties. This information is usually used in a passive way to observe goal progress. However, responding to this information may prevent goal failures. In addition, responding proactively in an opportunistic way can also lead to goals being completed faster. This paper proposes an architecture to support the adaptive planning of tasks for fault tolerance or opportunistic task execution based on goal accomplishment tracking. It argues that dramatically increased performance can be gained by monitoring task execution and altering plans dynamically

    Microgrid - The microthreaded many-core architecture

    Full text link
    Traditional processors use the von Neumann execution model, some other processors in the past have used the dataflow execution model. A combination of von Neuman model and dataflow model is also tried in the past and the resultant model is referred as hybrid dataflow execution model. We describe a hybrid dataflow model known as the microthreading. It provides constructs for creation, synchronization and communication between threads in an intermediate language. The microthreading model is an abstract programming and machine model for many-core architecture. A particular instance of this model is named as the microthreaded architecture or the Microgrid. This architecture implements all the concurrency constructs of the microthreading model in the hardware with the management of these constructs in the hardware.Comment: 30 pages, 16 figure

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018
    • …
    corecore