30,498 research outputs found

    A hybrid approach to conjunctive partial evaluation of logic programs

    Full text link
    Conjunctive partial deduction is a well-known technique for the partial evaluation of logic programs. The original formulation follows the so called online approach where all termination decisions are taken on-the-fly. In contrast, offline partial evaluators first analyze the source program and produce an annotated version so that the partial evaluation phase should only follow these annotations to ensure the termination of the process. In this work, we introduce a lightweight approach to conjunctive partial deduction that combines some of the advantages of both online and offline styles of partial evaluation. © 2011 Springer-Verlag.This work has been partially supported by the Spanish Ministerio de Ciencia e Innovación under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana under grant ACOMP/2010/042.Vidal Oriola, GF. (2011). A hybrid approach to conjunctive partial evaluation of logic programs. En Logic-Based Program Synthesis and Transformation. Springer Verlag (Germany). 6564:200-214. https://doi.org/10.1007/978-3-642-20551-4_13S2002146564Ben-Amram, A., Codish, M.: A SAT-Based Approach to Size Change Termination with Global Ranking Functions. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 218–232. Springer, Heidelberg (2007)Bruynooghe, M., De Schreye, D., Martens, B.: A General Criterion for Avoiding Infinite Unfolding during Partial Deduction of Logic Programs. In: Saraswat, V., Ueda, K. (eds.) Proc. 1991 Int’l Symp. on Logic Programming, pp. 117–131 (1991)Christensen, N.H., Glück, R.: Offline Partial Evaluation Can Be as Accurate as Online Partial Evaluation. ACM Transactions on Programming Languages and Systems 26(1), 191–220 (2004)Codish, M., Taboch, C.: A Semantic Basis for the Termination Analysis of Logic Programs. Journal of Logic Programming 41(1), 103–123 (1999)De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen, M.H.: Conjunctive Partial Deduction: Foundations, Control, Algorihtms, and Experiments. Journal of Logic Programming 41(2&3), 231–277 (1999)Hruza, J., Stepánek, P.: Speedup of logic programs by binarization and partial deduction. TPLP 4(3), 355–380 (2004)Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Generation. Prentice-Hall, Englewood Cliffs (1993)Leuschel, M.: Homeomorphic Embedding for Online Termination of Symbolic Methods. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 379–403. Springer, Heidelberg (2002)Leuschel, M.: The DPPD (Dozens of Problems for Partial Deduction) Library of Benchmarks (2007), http://www.ecs.soton.ac.uk/~mal/systems/dppd.htmlLeuschel, M., Elphick, D., Varea, M., Craig, S., Fontaine, M.: The Ecce and Logen Partial Evaluators and Their Web Interfaces. In: Proc. of PEPM 2006, pp. 88–94. IBM Press (2006)Leuschel, M., Vidal, G.: Fast Offline Partial Evaluation of Large Logic Programs. In: Hanus, M. (ed.) LOPSTR 2008. LNCS, vol. 5438, pp. 119–134. Springer, Heidelberg (2009)Lloyd, J.W., Shepherdson, J.C.: Partial Evaluation in Logic Programming. Journal of Logic Programming 11, 217–242 (1991)Somogyi, Z.: A System of Precise Modes for Logic Programs. In: Shapiro, E.Y. (ed.) Proc. of Third Int’l Conf. on Logic Programming, pp. 769–787. The MIT Press, Cambridge (1986

    Adaptive Online Sequential ELM for Concept Drift Tackling

    Get PDF
    A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect underfitting condition.Comment: Hindawi Publishing. Computational Intelligence and Neuroscience Volume 2016 (2016), Article ID 8091267, 17 pages Received 29 January 2016, Accepted 17 May 2016. Special Issue on "Advances in Neural Networks and Hybrid-Metaheuristics: Theory, Algorithms, and Novel Engineering Applications". Academic Editor: Stefan Hauf

    Robust Online Monitoring of Signal Temporal Logic

    Full text link
    Signal Temporal Logic (STL) is a formalism used to rigorously specify requirements of cyberphysical systems (CPS), i.e., systems mixing digital or discrete components in interaction with a continuous environment or analog com- ponents. STL is naturally equipped with a quantitative semantics which can be used for various purposes: from assessing the robustness of a specification to guiding searches over the input and parameter space with the goal of falsifying the given property over system behaviors. Algorithms have been proposed and implemented for offline computation of such quantitative semantics, but only few methods exist for an online setting, where one would want to monitor the satisfaction of a formula during simulation. In this paper, we formalize a semantics for robust online monitoring of partial traces, i.e., traces for which there might not be enough data to decide the Boolean satisfaction (and to compute its quantitative counterpart). We propose an efficient algorithm to compute it and demonstrate its usage on two large scale real-world case studies coming from the automotive domain and from CPS education in a Massively Open Online Course (MOOC) setting. We show that savings in computationally expensive simulations far outweigh any overheads incurred by an online approach

    Machine Learning for Indoor Localization Using Mobile Phone-Based Sensors

    Get PDF
    In this paper we investigate the problem of localizing a mobile device based on readings from its embedded sensors utilizing machine learning methodologies. We consider a real-world environment, collect a large dataset of 3110 datapoints, and examine the performance of a substantial number of machine learning algorithms in localizing a mobile device. We have found algorithms that give a mean error as accurate as 0.76 meters, outperforming other indoor localization systems reported in the literature. We also propose a hybrid instance-based approach that results in a speed increase by a factor of ten with no loss of accuracy in a live deployment over standard instance-based methods, allowing for fast and accurate localization. Further, we determine how smaller datasets collected with less density affect accuracy of localization, important for use in real-world environments. Finally, we demonstrate that these approaches are appropriate for real-world deployment by evaluating their performance in an online, in-motion experiment.Comment: 6 pages, 4 figure
    • …
    corecore