70,333 research outputs found

    Towards a flexible service integration through separation of business rules

    Get PDF
    Driven by dynamic market demands, enterprises are continuously exploring collaborations with others to add value to their services and seize new market opportunities. Achieving enterprise collaboration is facilitated by Enterprise Application Integration and Business-to-Business approaches that employ architectural paradigms like Service Oriented Architecture and incorporate technological advancements in networking and computing. However, flexibility remains a major challenge related to enterprise collaboration. How can changes in demands and opportunities be reflected in collaboration solutions with minimum time and effort and with maximum reuse of existing applications? This paper proposes an approach towards a more flexible integration of enterprise applications in the context of service mediation. We achieve this by combining goal-based, model-driven and serviceoriented approaches. In particular, we pay special attention to the separation of business rules from the business process of the integration solution. Specifying the requirements as goal models, we separate those parts which are more likely to evolve over time in terms of business rules. These business rules are then made executable by exposing them as Web services and incorporating them into the design of the business process.\ud Thus, should the business rules change, the business process remains unaffected. Finally, this paper also provides an evaluation of the flexibility of our solution in relation to the current work in business process flexibility research

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres

    High-Performance Cloud Computing: A View of Scientific Applications

    Full text link
    Scientific computing often requires the availability of a massive number of computers for performing large scale experiments. Traditionally, these needs have been addressed by using high-performance computing solutions and installed facilities such as clusters and super computers, which are difficult to setup, maintain, and operate. Cloud computing provides scientists with a completely new model of utilizing the computing infrastructure. Compute resources, storage resources, as well as applications, can be dynamically provisioned (and integrated within the existing infrastructure) on a pay per use basis. These resources can be released when they are no more needed. Such services are often offered within the context of a Service Level Agreement (SLA), which ensure the desired Quality of Service (QoS). Aneka, an enterprise Cloud computing solution, harnesses the power of compute resources by relying on private and public Clouds and delivers to users the desired QoS. Its flexible and service based infrastructure supports multiple programming paradigms that make Aneka address a variety of different scenarios: from finance applications to computational science. As examples of scientific computing in the Cloud, we present a preliminary case study on using Aneka for the classification of gene expression data and the execution of fMRI brain imaging workflow.Comment: 13 pages, 9 figures, conference pape
    • …
    corecore