33,838 research outputs found

    A Hybrid Approach for Data Analytics for Internet of Things

    Full text link
    The vision of the Internet of Things is to allow currently unconnected physical objects to be connected to the internet. There will be an extremely large number of internet connected devices that will be much more than the number of human being in the world all producing data. These data will be collected and delivered to the cloud for processing, especially with a view of finding meaningful information to then take action. However, ideally the data needs to be analysed locally to increase privacy, give quick responses to people and to reduce use of network and storage resources. To tackle these problems, distributed data analytics can be proposed to collect and analyse the data either in the edge or fog devices. In this paper, we explore a hybrid approach which means that both innetwork level and cloud level processing should work together to build effective IoT data analytics in order to overcome their respective weaknesses and use their specific strengths. Specifically, we collected raw data locally and extracted features by applying data fusion techniques on the data on resource constrained devices to reduce the data and then send the extracted features to the cloud for processing. We evaluated the accuracy and data consumption over network and thus show that it is feasible to increase privacy and maintain accuracy while reducing data communication demands.Comment: Accepted to be published in the Proceedings of the 7th ACM International Conference on the Internet of Things (IoT 2017

    A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics

    Get PDF
    To appear in IEEE Internet of Things JournalTo appear in IEEE Internet of Things JournalTo appear in IEEE Internet of Things JournalTo appear in IEEE Internet of Things JournalInternet of Things (IoT) devices and applications are being deployed in our homes and workplaces. These devices often rely on continuous data collection to feed machine learning models. However, this approach introduces several privacy and efficiency challenges, as the service operator can perform unwanted inferences on the available data. Recently, advances in edge processing have paved the way for more efficient, and private, data processing at the source for simple tasks and lighter models, though they remain a challenge for larger, and more complicated models. In this paper, we present a hybrid approach for breaking down large, complex deep neural networks for cooperative, privacy-preserving analytics. To this end, instead of performing the whole operation on the cloud, we let an IoT device to run the initial layers of the neural network, and then send the output to the cloud to feed the remaining layers and produce the final result. In order to ensure that the user's device contains no extra information except what is necessary for the main task and preventing any secondary inference on the data, we introduce Siamese fine-tuning. We evaluate the privacy benefits of this approach based on the information exposed to the cloud service. We also assess the local inference cost of different layers on a modern handset. Our evaluations show that by using Siamese fine-tuning and at a small processing cost, we can greatly reduce the level of unnecessary, potentially sensitive information in the personal data, and thus achieving the desired trade-off between utility, privacy, and performance

    Faulty Metrics and the Future of Digital Journalism

    Get PDF
    This report explores the industry of Internet measurement and its impact on news organizations working online. It investigates this landscape through a combination of documentary research and interviews with measurement companies, trade groups, advertising agencies, media scholars, and journalists from national newspapers, regional papers, and online-only news ventures
    • …
    corecore