519 research outputs found

    Implantation modified deep echo state neural networks and improve harmony clustering algorithm for optimal and energy efficient path in mobile sink

    Get PDF
    Wireless network sensors based on the mobile sink are regarded to be a common network and used in various fields in the last few years, they are thought to be easy to use, but contain the problem of energy loss and are affected by an energy hole problem, as it depends on batteries. This paper proposes a solution to this problem by using an innovative objective function for a consistent distributing of cluster heads, the enhanced harmony search based routing protocols based on energy equilibrated node clustering protocol. In order to route the data packet among the sink and cluster heads, an enhanced modified deep echo state neural network is suggested. The efficiency of a projected integrated clustering and routing protocol has been investigated at 500 nodes, and the 96 per cent success data for the proposed algorithm is given using the average energy consumption, send and receive packaged and optimum numbers of CH

    Hybrid artificial intelligence algorithms for short-term load and price forecasting in competitive electric markets

    Get PDF
    The liberalization and deregulation of electric markets forced the various participants to accommodate several challenges, including: a considerable accumulation of new generation capacity from renewable sources (fundamentally wind energy), the unpredictability associated with these new forms of generation and new consumption patterns, contributing to further electricity prices volatility (e.g. the Iberian market). Given the competitive framework in which market participants operate, the existence of efficient computational forecasting techniques is a distinctive factor. Based on these forecasts a suitable bidding strategy and an effective generation systems operation planning is achieved, together with an improved installed transmission capacity exploitation, results in maximized profits, all this contributing to a better energy resources utilization. This dissertation presents a new hybrid method for load and electricity prices forecasting, for one day ahead time horizon. The optimization scheme presented in this method, combines the efforts from different techniques, notably artificial neural networks, several optimization algorithms and wavelet transform. The method’s validation was made using different real case studies. The subsequent comparison (accuracy wise) with published results, in reference journals, validated the proposed hybrid method suitability.O processo de liberalização e desregulação dos mercados de energia elétrica, obrigou os diversos participantes a acomodar uma série de desafios, entre os quais: a acumulação considerável de nova capacidade de geração proveniente de origem renovável (fundamentalmente energia eólica), a imprevisibilidade associada a estas novas formas de geração e novos padrões de consumo. Resultando num aumento da volatilidade associada aos preços de energia elétrica (como é exemplo o mercado ibérico). Dado o quadro competitivo em que os agentes de mercado operam, a existência de técnicas computacionais de previsão eficientes, constituí um fator diferenciador. É com base nestas previsões que se definem estratégias de licitação e se efetua um planeamento da operação eficaz dos sistemas de geração que, em conjunto com um melhor aproveitamento da capacidade de transmissão instalada, permite maximizar os lucros, realizando ao mesmo tempo um melhor aproveitamento dos recursos energéticos. Esta dissertação apresenta um novo método híbrido para a previsão da carga e dos preços da energia elétrica, para um horizonte temporal a 24 horas. O método baseia-se num esquema de otimização que reúne os esforços de diferentes técnicas, nomeadamente redes neuronais artificiais, diversos algoritmos de otimização e da transformada de wavelet. A validação do método foi feita em diferentes casos de estudo reais. A posterior comparação com resultados já publicados em revistas de referência, revelou um excelente desempenho do método hibrido proposto

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Survey analysis for optimization algorithms applied to electroencephalogram

    Get PDF
    This paper presents a survey for optimization approaches that analyze and classify Electroencephalogram (EEG) signals. The automatic analysis of EEG presents a significant challenge due to the high-dimensional data volume. Optimization algorithms seek to achieve better accuracy by selecting practical features and reducing unwanted features. Forty-seven reputable research papers are provided in this work, emphasizing the developed and executed techniques divided into seven groups based on the applied optimization algorithm particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC), grey wolf optimizer (GWO), Bat, Firefly, and other optimizer approaches). The main measures to analyze this paper are accuracy, precision, recall, and F1-score assessment. Several datasets have been utilized in the included papers like EEG Bonn University, CHB-MIT, electrocardiography (ECG) dataset, and other datasets. The results have proven that the PSO and GWO algorithms have achieved the highest accuracy rate of around 99% compared with other techniques

    Enhancing statistical wind speed forecasting models : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering at Massey University, Manawatū Campus, New Zealand

    Get PDF
    In recent years, wind speed forecasting models have seen significant development and growth. In particular, hybrid models have been emerging since the last decade. Hybrid models combine two or more techniques from several categories, with each model utilizing its distinct strengths. Mainly, data-driven models that include statistical and Artificial Intelligence/Machine Learning (AI/ML) models are deployed in hybrid models for shorter forecasting time horizons (< 6hrs). Literature studies show that machine learning models have gained enormous potential owing to their accuracy and robustness. On the other hand, only a handful of studies are available on the performance enhancement of statistical models, despite the fact that hybrid models are incomplete without statistical models. To address the knowledge gap, this thesis identified the shortcomings of traditional statistical models while enhancing prediction accuracy. Three statistical models are considered for analyses: Grey Model [GM(1,1)], Markov Chain, and Holt’s Double Exponential Smoothing models. Initially, the problems that limit the forecasting models' applicability are highlighted. Such issues include negative wind speed predictions, failure of predetermined accuracy levels, non-optimal estimates, and additional computational cost with limited performance. To address these concerns, improved forecasting models are proposed considering wind speed data of Palmerston North, New Zealand. Several methodologies have been developed to improve the model performance and fulfill the necessary and sufficient conditions. These approaches include adjusting dynamic moving window, self-adaptive state categorization algorithm, a similar approach to the leave-one-out method, and mixed initialization method. Keeping in view the application of the hybrid methods, novel MODWT-ARIMA-Markov and AGO-HDES models are further proposed as secondary objectives. Also, a comprehensive analysis is presented by comparing sixteen models from three categories, each for four case studies, three rolling windows, and three forecasting horizons. Overall, the improved models showed higher accuracy than their counter traditional models. Finally, the future directions are highlighted that need subsequent research to improve forecasting performance further

    An echo state network architecture based on quantum logic gate and its optimization

    Get PDF
    Quantum neural network (QNN) is developed based on two classical theories of quantum computation and artificial neural networks. It has been proved that quantum computing is an important candidate for improving the performance of traditional neural networks. In this work, inspired by the QNN, the quantum computation method is combined with the echo state networks (ESNs), and a hybrid model namely quantum echo state network (QESN) is proposed. Firstly, the input training data is converted to quantum state, and the internal neurons in the dynamic reservoir of ESN are replaced by qubit neurons. Then in order to maintain the stability of QESN, the particle swarm optimization (PSO) is applied to the model for the parameter optimizations. The synthetic time series and real financial application datasets (Standard & Poor's 500 index and foreign exchange) are used for performance evaluations, where the ESN, autoregressive integrated moving average (ARIMAX) are used as the benchmarks. Results show that the proposed PSO-QESN model achieves a good performance for the time series predication tasks and is better than the benchmarking algorithms. Thus, it is feasible to apply quantum computing to the ESN model, which provides a novel method to improve the ESN performance

    A Comprehensive Evaluation of Nature Inspired Routing Algorithm for Mobile Ad Hoc Network : DEA and BCA

    Get PDF
    This paper discussed about the comprehensive evaluation of nature inspired routing algorithms such as Dolphin Echolocation Algorithm (DEA) and Bee colony Algorithm (BCA) use for distance optimization. The influence of DEA and BCA algorithms on Quality of Service (QoS) performance matrices for Mobile Ad hoc Network (MANET) is analyzed. Ultimately with the help of DEA it is possible to achieve optimized routing path between source and destination nodes. Further this paper have the analysis of various results which gives the comprehensive evaluation of DEA algorithm and it is suitable for MANET for achieving good Throughput, packet delivery ratio, delay and overhand
    corecore