1,397 research outputs found

    Hybrid compression of video with graphics in DTV communication systems

    Get PDF
    Advanced broadcast manipulation of TV sequences and enhanced user interfaces for TV systems have resulted in an increased amount of pre- and post-editing of video sequences, where graphical information is inserted. However, in the current broadcasting chain, there are no provisions for enabling an efficient transmission/storage of these mixed video and graphics signals and, at this emerging stage of DTV systems, introducing new standards is not desired. Nevertheless, in the professional video communication chain between content provider and broadcaster and locally, in the DTV receiver, proprietary video-graphics compression schemes can be used to enable more efficient transmission/storage of mixed video and graphics signals. For example, in the DTV receiver case this will lead to a significant memory-cost reduction. To preserve a high overall image quality, the video and graphics data require independent coding systems, matched with their specific visual and statistical properties. We introduce various efficient algorithms that support both the lossless (contour, runlength and arithmetic coding) and the lossy (block predictive coding) compression of graphics data. If the graphics data are a-priori mixed with video and the graphics position is unknown at compression time, an accurate detection mechanism is applied to distinguish the two signals, such that independent coding algorithms can be employed for each data-type. In the DTV memory-reduction scenario, an overall bit-rate control completes the system, ensuring a fixed compression factor of 2-3 per frame without sacrificing the quality of the graphic

    Depth-based Multi-View 3D Video Coding

    Get PDF

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Implementation issues in source coding

    Get PDF
    An edge preserving image coding scheme which can be operated in both a lossy and a lossless manner was developed. The technique is an extension of the lossless encoding algorithm developed for the Mars observer spectral data. It can also be viewed as a modification of the DPCM algorithm. A packet video simulator was also developed from an existing modified packet network simulator. The coding scheme for this system is a modification of the mixture block coding (MBC) scheme described in the last report. Coding algorithms for packet video were also investigated

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Investigation of Different Video Compression Schemes Using Neural Networks

    Get PDF
    Image/Video compression has great significance in the communication of motion pictures and still images. The need for compression has resulted in the development of various techniques including transform coding, vector quantization and neural networks. this thesis neural network based methods are investigated to achieve good compression ratios while maintaining the image quality. Parts of this investigation include motion detection, and weight retraining. An adaptive technique is employed to improve the video frame quality for a given compression ratio by frequently updating the weights obtained from training. More specifically, weight retraining is performed only when the error exceeds a given threshold value. Image quality is measured objectively, using the peak signal-to-noise ratio versus performance measure. Results show the improved performance of the proposed architecture compared to existing approaches. The proposed method is implemented in MATLAB and the results obtained such as compression ratio versus signalto- noise ratio are presented
    • …
    corecore