3,200 research outputs found

    Forecasting foreign exchange rates with adaptive neural networks using radial basis functions and particle swarm optimization

    Get PDF
    The motivation for this paper is to introduce a hybrid Neural Network architecture of Particle Swarm Optimization and Adaptive Radial Basis Function (ARBF-PSO), a time varying leverage trading strategy based on Glosten, Jagannathan and Runkle (GJR) volatility forecasts and a Neural Network fitness function for financial forecasting purposes. This is done by benchmarking the ARBF-PSO results with those of three different Neural Networks architectures, a Nearest Neighbors algorithm (k-NN), an autoregressive moving average model (ARMA), a moving average convergence/divergence model (MACD) plus a naĂŻve strategy. More specifically, the trading and statistical performance of all models is investigated in a forecast simulation of the EUR/USD, EUR/GBP and EUR/JPY ECB exchange rate fixing time series over the period January 1999 to March 2011 using the last two years for out-of-sample testing

    Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms: support vector regression forecast combinations

    Get PDF
    The motivation of this paper is to introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model for optimal parameter selection and feature subset combination. The algorithm is applied to the task of forecasting and trading the EUR/USD, EUR/GBP and EUR/JPY exchange rates. The proposed methodology genetically searches over a feature space (pool of individual forecasts) and then combines the optimal feature subsets (SVR forecast combinations) for each exchange rate. This is achieved by applying a fitness function specialized for financial purposes and adopting a sliding window approach. The individual forecasts are derived from several linear and non-linear models. RG-SVR is benchmarked against genetically and non-genetically optimized SVRs and SVMs models that are dominating the relevant literature, along with the robust ARBF-PSO neural network. The statistical and trading performance of all models is investigated during the period of 1999–2012. As it turns out, RG-SVR presents the best performance in terms of statistical accuracy and trading efficiency for all the exchange rates under study. This superiority confirms the success of the implemented fitness function and training procedure, while it validates the benefits of the proposed algorithm

    Forecasting bus passenger flows by using a clustering-based support vector regression approach

    Get PDF
    As a significant component of the intelligent transportation system, forecasting bus passenger flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to varied destinations and departure times. For this reason, a novel forecasting model named as affinity propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally, the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate that the proposed model performs better than other peer models in terms of absolute percentage error and mean absolute percentage error. It is recommended that the deterministic clustering technique with stable cluster results (AP) can improve the forecasting performance significantly.info:eu-repo/semantics/publishedVersio

    Using intelligent optimization methods to improve the group method of data handling in time series prediction

    Get PDF
    In this paper we show how the performance of the basic algorithm of the Group Method of Data Handling (GMDH) can be improved using Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The new improved GMDH is then used to predict currency exchange rates: the US Dollar to the Euros. The performance of the hybrid GMDHs are compared with that of the conventional GMDH. Two performance measures, the root mean squared error and the mean absolute percentage errors show that the hybrid GMDH algorithm gives more accurate predictions than the conventional GMDH algorithm

    Solar radiation forecasting in nigeria based on hybrid PSO-ANFIS and WT-ANFIS approach

    Get PDF
    For an effective and reliable solar energy production, there is need for precise solar radiation knowledge. In this study, two hybrid approaches are investigated for horizontal solar radiation prediction in Nigeria. These approaches combine an Adaptive Neuro-fuzzy Inference System (ANFIS) with Particle Swarm Optimization (PSO) and Wavelet Transform (WT) algorithms. Meteorological data comprising of monthly mean sunshine hours (SH), relative humidity (RH), minimum temperature (Tmin) and maximum temperature (Tmax) ranging from 2002-2012 were utilized for the forecasting. Based on the statistical evaluators used for performance evaluation which are the root mean square error and the coefficient of determination (RMSE and RÂČ), the two models were found to be very worthy models for solar radiation forecasting. The statistical indicators show that the hybrid WT-ANFIS model’s accuracy outperforms the PSO-ANFIS model by 65% RMSE and 9% RÂČ. The results show that hybridizing the ANFIS by PSO and WT algorithms is efficient for solar radiation forecasting even though the hybrid WT-ANFIS gives more accurate results

    Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions and Research Directions

    Get PDF
    Energy management systems are designed to monitor, optimize, and control the smart grid energy market. Demand-side management, considered as an essential part of the energy management system, can enable utility market operators to make better management decisions for energy trading between consumers and the operator. In this system, a priori knowledge about the energy load pattern can help reshape the load and cut the energy demand curve, thus allowing a better management and distribution of the energy in smart grid energy systems. Designing a computationally intelligent load forecasting (ILF) system is often a primary goal of energy demand management. This study explores the state of the art of computationally intelligent (i.e., machine learning) methods that are applied in load forecasting in terms of their classification and evaluation for sustainable operation of the overall energy management system. More than 50 research papers related to the subject identified in existing literature are classified into two categories: namely the single and the hybrid computational intelligence (CI)-based load forecasting technique. The advantages and disadvantages of each individual techniques also discussed to encapsulate them into the perspective into the energy management research. The identified methods have been further investigated by a qualitative analysis based on the accuracy of the prediction, which confirms the dominance of hybrid forecasting methods, which are often applied as metaheurstic algorithms considering the different optimization techniques over single model approaches. Based on extensive surveys, the review paper predicts a continuous future expansion of such literature on different CI approaches and their optimizations with both heuristic and metaheuristic methods used for energy load forecasting and their potential utilization in real-time smart energy management grids to address future challenges in energy demand managemen
    • 

    corecore