509 research outputs found

    A hybrid active contour segmentation method for myocardial D-SPECT images

    Get PDF
    Ischaemic heart disease has become one of the leading causes of mortality worldwide. Dynamic single-photon emission computed tomography (D-SPECT) is an advanced routine diagnostic tool commonly used to validate myocardial function in patients suffering from various heart diseases. Accurate automatic localization and segmentation of myocardial regions is helpful in creating a three-dimensional myocardial model and assisting clinicians to perform assessments of myocardial function. Thus, image segmentation is a key technology in preclinical cardiac studies. Intensity inhomogeneity is one of the common challenges in image segmentation and is caused by image artefacts and instrument inaccuracy. In this paper, a novel region-based active contour model that can segment the myocardial D-SPECT image accurately is presented. First, a local region-based fitting image is defined based on information related to the intensity. Second, a likelihood fitting image energy function is built in a local region around each point in a given vector-valued image. Next, the level set method is used to present a global energy function with respect to the neighbourhood centre. The proposed approach guarantees precision and computational efficiency by combining the region-scalable fitting energy (RSF) model and local image fitting energy (LIF) model, and it can solve the issue of high sensitivity to initialization for myocardial D-SPECT segmentation

    Multi-modality cardiac image computing: a survey

    Get PDF
    Multi-modality cardiac imaging plays a key role in the management of patients with cardiovascular diseases. It allows a combination of complementary anatomical, morphological and functional information, increases diagnosis accuracy, and improves the efficacy of cardiovascular interventions and clinical outcomes. Fully-automated processing and quantitative analysis of multi-modality cardiac images could have a direct impact on clinical research and evidence-based patient management. However, these require overcoming significant challenges including inter-modality misalignment and finding optimal methods to integrate information from different modalities. This paper aims to provide a comprehensive review of multi-modality imaging in cardiology, the computing methods, the validation strategies, the related clinical workflows and future perspectives. For the computing methodologies, we have a favored focus on the three tasks, i.e., registration, fusion and segmentation, which generally involve multi-modality imaging data, either combining information from different modalities or transferring information across modalities. The review highlights that multi-modality cardiac imaging data has the potential of wide applicability in the clinic, such as trans-aortic valve implantation guidance, myocardial viability assessment, and catheter ablation therapy and its patient selection. Nevertheless, many challenges remain unsolved, such as missing modality, modality selection, combination of imaging and non-imaging data, and uniform analysis and representation of different modalities. There is also work to do in defining how the well-developed techniques fit in clinical workflows and how much additional and relevant information they introduce. These problems are likely to continue to be an active field of research and the questions to be answered in the future

    Testing SPECT Motion Correction Algorithms

    Get PDF
    Frequently, testing of Single Photon Emission Computed Tomography (SPECT) motion correction algorithms is done either by using simplistic deformations that do not accurately simulate true patient motion or by applying the algorithms directly to data acquired from a real patient, where the true internal motion is unknown. In this work, we describe a way to combine these two approaches by using imaging data acquired from real volunteers to simulate the data that the motion correction algorithms would normally observe. The goal is to provide an assessment framework which can both: simulate realistic SPECT acquisitions that incorporate realistic body deformations and provide a ground truth volume to compare against. Every part of the motion correction algorithm needs to be exercised: from parameter estimation of the motion model, to the final reconstruction results. In order to build the ground truth anthropomorphic numerical phantoms, we acquire high resolution MRI scans and motion observation data of a volunteer in multiple different configurations. We then extract the organ boundaries using thresholding, active contours, and morphology. Phantoms of radioactivity uptake and density inside the body can be generated from these boundaries to be used to simulate SPECT acquisitions. We present results on extraction of the ribs, lungs, heart, spine, and the rest of the soft tissue in the thorax using our segmentation approach. In general, extracting the lungs, heart, and ribs in images that do not contain the spine works well, but the spine could be better extracted using other methods that we discuss. We also go in depth into the software development component of this work, describing the C++ coding framework we used and the High Level Interactive GUI Language (HLING). HLING solved a lot of problems but introduced a fair bit of its own. We include a set of requirements to provide a foundation for the next attempt at developing a declarative and minimally restrictive methodology for writing interactive image processing applications in C++ based on lessons learned during the development of HLING

    The Assessment of left ventricular Function in MRI using the detection of myocardial borders and optical flow approaches: A Review

    Get PDF
    The evaluation of left ventricular wall motion in Magnetic Resonance Imaging (MRI) clinical practice is based on a visual assessment of cine-MRI sequences. In fact, clinical interpreters (radiologists) proceed with a global visual evaluation of multiple cine-MRI sequences acquired in the three standard views. In addition, some functional parameters are quantified following a manual or a semi-automatic contouring of the myocardial borders. Although these parameters give information about the functional state of the left ventricle, they are not able to provide the location and the extent of wall motion abnormalities, which are associated with many cardiovascular diseases. In the past years, several approaches were developed to overcome the limitations of the classical evaluation techniques of left ventricular function. The aim of this article is to present an overview of the different methods and to summarize the relevant techniques based on myocardial contour detection and optical flow for regional assessment of left ventricular abnormalities

    Automatic segmentation of wall structures from cardiac images

    Get PDF
    One important topic in medical image analysis is segmenting wall structures from different cardiac medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). This task is typically done by radiologists either manually or semi-automatically, which is a very time-consuming process. To reduce the laborious human efforts, automatic methods have become popular in this research. In this thesis, features insensitive to data variations are explored to segment the ventricles from CT images and extract the left atrium from MR images. As applications, the segmentation results are used to facilitate cardiac disease analysis. Specifically, 1. An automatic method is proposed to extract the ventricles from CT images by integrating surface decomposition with contour evolution techniques. In particular, the ventricles are first identified on a surface extracted from patient-specific image data. Then, the contour evolution is employed to refine the identified ventricles. The proposed method is robust to variations of ventricle shapes, volume coverages, and image quality. 2. A variational region-growing method is proposed to segment the left atrium from MR images. Because of the localized property of this formulation, the proposed method is insensitive to data variabilities that are hard to handle by globalized methods. 3. In applications, a geometrical computational framework is proposed to estimate the myocardial mass at risk caused by stenoses. In addition, the segmentation of the left atrium is used to identify scars for MR images of post-ablation.PhDCommittee Chair: Yezzi, Anthony; Committee Co-Chair: Tannenbaum, Allen; Committee Member: Egerstedt, Magnus ; Committee Member: Fedele, Francesco ; Committee Member: Stillman, Arthur; Committee Member: Vela,Patrici

    Image based approach for early assessment of heart failure.

    Get PDF
    In diagnosing heart diseases, the estimation of cardiac performance indices requires accurate segmentation of the left ventricle (LV) wall from cine cardiac magnetic resonance (CMR) images. MR imaging is noninvasive and generates clear images; however, it is impractical to manually process the huge number of images generated to calculate the performance indices. In this dissertation, we introduce a novel, fast, robust, bi-directional coupled parametric deformable models that are capable of segmenting the LV wall borders using first- and second-order visual appearance features. These features are embedded in a new stochastic external force that preserves the topology of the LV wall to track the evolution of the parametric deformable models control points. We tested the proposed segmentation approach on 15 data sets in 6 infarction patients using the Dice similarity coefficient (DSC) and the average distance (AD) between the ground truth and automated segmentation contours. Our approach achieves a mean DSC value of 0.926±0.022 and mean AD value of 2.16±0.60 mm compared to two other level set methods that achieve mean DSC values of 0.904±0.033 and 0.885±0.02; and mean AD values of 2.86±1.35 mm and 5.72±4.70 mm, respectively. Also, a novel framework for assessing both 3D functional strain and wall thickening from 4D cine cardiac magnetic resonance imaging (CCMR) is introduced. The introduced approach is primarily based on using geometrical features to track the LV wall during the cardiac cycle. The 4D tracking approach consists of the following two main steps: (i) Initially, the surface points on the LV wall are tracked by solving a 3D Laplace equation between two subsequent LV surfaces; and (ii) Secondly, the locations of the tracked LV surface points are iteratively adjusted through an energy minimization cost function using a generalized Gauss-Markov random field (GGMRF) image model in order to remove inconsistencies and preserve the anatomy of the heart wall during the tracking process. Then the circumferential strains are straight forward calculated from the location of the tracked LV surface points. In addition, myocardial wall thickening is estimated by co-allocation of the corresponding points, or matches between the endocardium and epicardium surfaces of the LV wall using the solution of the 3D laplace equation. Experimental results on in vivo data confirm the accuracy and robustness of our method. Moreover, the comparison results demonstrate that our approach outperforms 2D wall thickening estimation approaches

    MRI-Based Attenuation Correction in Emission Computed Tomography

    Get PDF
    The hybridization of magnetic resonance imaging (MRI) with positron emission tomography (PET) or single photon emission computed tomography (SPECT) enables the collection of an assortment of biological data in spatial and temporal register. However, both PET and SPECT are subject to photon attenuation, a process that degrades image quality and precludes quantification. To correct for the effects of attenuation, the spatial distribution of linear attenuation coefficients (μ-coefficients) within and about the patient must be available. Unfortunately, extracting μ-coefficients from MRI is non-trivial. In this thesis, I explore the problem of MRI-based attenuation correction (AC) in emission tomography. In particular, I began by asking whether MRI-based AC would be more reliable in PET or in SPECT. To this end, I implemented an MRI-based AC algorithm relying on image segmentation and applied it to phantom and canine emission data. The subsequent analysis revealed that MRI-based AC performed better in SPECT than PET, which is interesting since AC is more challenging in SPECT than PET. Given this result, I endeavoured to improve MRI-based AC in PET. One problem that required addressing was that the lungs yield very little signal in MRI, making it difficult to infer their μ-coefficients. By using a pulse sequence capable of visualizing lung parenchyma, I established a linear relationship between MRI signal and the lungs’ μ-coefficients. I showed that applying this mapping on a voxel-by-voxel basis improved quantification in PET reconstructions compared to conventional MRI-based AC techniques. Finally, I envisaged that a framework for MRI-based AC methods would potentiate further improvements. Accordingly, I identified three ways an MRI can be converted to μ-coefficients: 1) segmentation, wherein the MRI is divided into tissue types and each is assigned an μ-coefficient, 2) registration, wherein a template of μ-coefficients is aligned with the MRI, and 3) mapping, wherein a function maps MRI voxels to μ-coefficients. I constructed an algorithm for each method and catalogued their strengths and weaknesses. I concluded that a combination of approaches is desirable for MRI-based AC. Specifically, segmentation is appropriate for air, fat, and water, mapping is appropriate for lung, and registration is appropriate for bone

    Post-revascularization Ejection Fraction Prediction for Patients Undergoing Percutaneous Coronary Intervention Based on Myocardial Perfusion SPECT Imaging Radiomics:a Preliminary Machine Learning Study

    Get PDF
    In this study, the ability of radiomics features extracted from myocardial perfusion imaging with SPECT (MPI-SPECT) was investigated for the prediction of ejection fraction (EF) post-percutaneous coronary intervention (PCI) treatment. A total of 52 patients who had undergone pre-PCI MPI-SPECT were enrolled in this study. After normalization of the images, features were extracted from the left ventricle, initially automatically segmented by k-means and active contour methods, and finally edited and approved by an expert radiologist. More than 1700 2D and 3D radiomics features were extracted from each patient’s scan. A cross-combination of three feature selections and seven classifier methods was implemented. Three classes of no or dis-improvement (class 1), improved EF from 0 to 5% (class 2), and improved EF over 5% (class 3) were predicted by using tenfold cross-validation. Lastly, the models were evaluated based on accuracy, AUC, sensitivity, specificity, precision, and F-score. Neighborhood component analysis (NCA) selected the most predictive feature signatures, including Gabor, first-order, and NGTDM features. Among the classifiers, the best performance was achieved by the fine KNN classifier, which yielded mean accuracy, AUC, sensitivity, specificity, precision, and F-score of 0.84, 0.83, 0.75, 0.87, 0.78, and 0.76, respectively, in 100 iterations of classification, within the 52 patients with 10-fold cross-validation. The MPI-SPECT-based radiomic features are well suited for predicting post-revascularization EF and therefore provide a helpful approach for deciding on the most appropriate treatment.</p

    Fast fully automatic myocardial segmentation in 4D cine cardiac magnetic resonance datasets

    Get PDF
    Dissertação de mestrado integrado em Engenharia BiomédicaCardiovascular diseases (CVDs) are the leading cause of death in the world, representing 30% of all global deaths. Among others, assessment of the left ventricular (LV) morphology and global function using non-invasive cardiac imaging is an interesting technique for diagnosis and treatment follow-up of patients with CVDs. Nowadays, cardiac magnetic resonance (CMR) imaging is the gold-standard technique for the quantification of LV volumes, mass and ejection fraction, requiring the delineation of endocardial and epicardial contours of the left ventricle from cine MR images. In clinical practice, the physicians perform this segmentation manually, being a tedious, time consuming and unpractical task. Even though several (semi-)automated methods have been presented for LV CMR segmentation, fast, automatic and optimal boundaries assessment is still lacking, usually requiring the physician to manually correct the contours. In the present work, we propose a novel fast fully automatic 3D+time LV segmentation framework for CMR datasets. The proposed framework presents three conceptual blocks: 1) an automatic 2D mid-ventricular initialization and segmentation; 2) an automatic stack initialization followed by a 3D segmentation at the end-diastolic phase; and 3) a tracking procedure to delineate both endo and epicardial contours throughout the cardiac cycle. In each block, specific CMR-targeted algorithms are proposed for the different steps required. Hereto, we propose automatic and feasible initialization procedures. Moreover, we adapt the recent B-spline Explicit Active Surfaces (BEAS) framework to the properties of CMR image segmentation by integrating dedicated energy terms and making use of a cylindrical coordinate system that better fits the topology of CMR data. At last, two tracking methods are presented and compared. The proposed framework has been validated on 45 4D CMR datasets from a publicly available database and on a large database from an ongoing multi-center clinical trial with 318 4D datasets. In the technical validation, the framework showed competitive results against the state-of-the-art methods, presenting leading results in both accuracy and average computational time in the common database used for comparative purposes. Moreover, the results in the large scale clinical validation confirmed the high feasibility and robustness of the proposed framework for accurate LV morphology and global function assessment. In combination with the low computational burden of the method, the present methodology seems promising to be used in daily clinical practice.As doenças cardiovasculares (DCVs) são a principal causa de morte no mundo, representando 30% destas a nível global. Na prática clínica, uma técnica empregue no diagnóstico de pacientes com DCVs é a avaliação da morfologia e da função global do ventrículo esquerdo (VE), através de técnicas de imagiologia não-invasivas. Atualmente, a ressonância magnética cardíaca (RMC) é a modalidade de referência na quantificação dos volumes, massa e fração de ejeção do VE, exigindo a delimitação dos contornos do endocárdio e epicárdio a partir de imagens dinâmicas de RMC. Na prática clínica diária, o método preferencial é a segmentação manual. No entanto, esta é uma tarefa demorada, sujeita a erro humano e pouco prática. Apesar de até à data diversos métodos (semi)-automáticos terem sido apresentados para a segmentação do VE em imagens de RMC, ainda não existe um método capaz de avaliar idealmente os contornos de uma forma automática, rápida e precisa, levando a que geralmente o médico necessite de corrigir manualmente os contornos. No presente trabalho é proposta uma nova framework para a segmentação automática do VE em imagens 3D+tempo de RMC. O algoritmo apresenta três blocos principais: 1) uma inicialização e segmentação automática 2D num corte medial do ventrículo; 2) uma inicialização e segmentação tridimensional no volume correspondente ao final da diástole; e 3) um algoritmo de tracking para obter os contornos ao longo de todo o ciclo cardíaco. Neste sentido, são propostos procedimentos de inicialização automática com elevada robustez. Mais ainda, é proposta uma adaptação da recente framework “B-spline Explicit Active Surfaces” (BEAS) com a integração de uma energia específica para as imagens de RMC e utilizando uma formulação cilíndrica para tirar partido da topologia destas imagens. Por último, são apresentados e comparados dois algoritmos de tracking para a obtenção dos contornos ao longo do tempo. A framework proposta foi validada em 45 datasets de RMC provenientes de uma base de dados disponível ao público, bem como numa extensa base de dados com 318 datasets para uma validação clínica. Na avaliação técnica, a framework proposta obteve resultados competitivos quando comparada com outros métodos do estado da arte, tendo alcançado resultados de precisão e tempo computacional superiores a estes. Na validação clínica em larga escala, a framework provou apresentar elevada viabilidade e robustez na avaliação da morfologia e função global do VE. Em combinação com o baixo custo computacional do algoritmo, a presente metodologia apresenta uma perspetiva promissora para a sua aplicação na prática clínica diária

    Non-Invasive Imaging for the Assessment of Cardiac Dose and Function Following Focused External Beam Irradiation

    Get PDF
    Technological advances in imaging and radiotherapy have led to significant improvement in the survival rate of breast cancer patients. However, a larger proportion of patients are now exhibiting the less understood, latent effects of incidental cardiac irradiation that occurs during left-sided breast radiotherapy. Here, we examine the utility of four-dimensional computed tomography (4D-CT) for the accurate assessment of cardiac dose; and a hybrid positron emission tomography (PET) magnetic resonance imaging (MRI) system to longitudinally study radiation-induced cardiac effects in a canine model. Using 4D-CT and deformable dose accumulation, we assessed the variation caused by breathing motion in the estimated dose to the heart, left-ventricle, and left anterior descending artery (LAD) of left-sided breast cancer patients. The LAD showed substantial variation in dose due to breathing. In light of this, we suggest the use of 4D-CT and dose accumulation for future clinical studies looking at the relationship between LAD dose and cardiac toxicity. Although symptoms of cardiac dysfunction may not manifest clinically for 10-15 years post radiation, PET-MRI can potentially identify earlier changes in cardiac inflammation and perfusion that are typically asymptomatic. Using PET-MRI, the progression of radiation-induced cardiac toxicity was assessed in a large animal model. Five canines were imaged using 13N-ammonia and 18F-fluorodeoxyglucose (FDG) PET-MRI to assess changes in myocardial perfusion and inflammation, respectively. All subjects were imaged at baseline, 1 week, 4 weeks, 3 months, 6 months, and 12 months after focused cardiac irradiation. To the best of our knowledge PET has not been previously used to assess cardiac perfusion following irradiation. The delivered dose to the heart, left ventricle, LAD, and left circumflex artery were comparable to what has been observed during breast radiotherapy. Relative to baseline, a transient increase in myocardial perfusion was observed followed by a gradual return to baseline. However, a persistent increase in FDG uptake was observed throughout the entire left ventricle, including both irradiated and less-irradiated portions of the heart. In light of these findings, we suggest the use of this imaging approach for future human studies to assess mitigation strategies aimed at minimizing cardiac exposure and long-term toxicity subsequent to left-sided breast irradiation
    corecore