919 research outputs found

    Physiological Responses During Hybrid BNCI Control of an Upper-Limb Exoskeleton

    Get PDF
    When combined with assistive robotic devices, such as wearable robotics, brain/neural-computer interfaces (BNCI) have the potential to restore the capabilities of handicapped people to carry out activities of daily living. To improve applicability of such systems, workload and stress should be reduced to a minimal level. Here, we investigated the user’s physiological reactions during the exhaustive use of the interfaces of a hybrid control interface. Eleven BNCI-naive healthy volunteers participated in the experiments. All participants sat in a comfortable chair in front of a desk and wore a whole-arm exoskeleton as well as wearable devices for monitoring physiological, electroencephalographic (EEG) and electrooculographic (EoG) signals. The experimental protocol consisted of three phases: (i) Set-up, calibration and BNCI training; (ii) Familiarization phase ; and (iii) Experimental phase during which each subject had to perform EEG and EoG tasks. After completing each task, the NASA-TLX questionnaire and self-assessment manikin (SAM) were completed by the user. We found significant differences (p-value < 0.05) in heart rate variability (HRV) and skin conductance level (SCL) between participants during the use of the two different biosignal modalities (EEG, EoG) of the BNCI. This indicates that EEG control is associated with a higher level of stress (associated with a decrease in HRV) and mental work load (associated with a higher level of SCL) when compared to EoG control. In addition, HRV and SCL modulations correlated with the subject’s workload perception and emotional responses assessed through NASA-TLX questionnaires and SAM

    Comparison of filtering methods for real-time extraction of the volitional EMG component in electrically stimulated muscles

    Get PDF
    Objective Recorded electromyograms (EMG) of electrically stimulated muscles can contain both an exogenous-evoked potential (M-wave) and an endogenous, or volitional, component. This study evaluated the effectiveness of three filtering methods (i.e., high-pass, adaptive, and comb), commonly used in neurorehabilitation, in extracting the volitional component of simulated and experimental EMG during upper-limb tasks. Methods Volitional EMG and M-wave were simulated through a physiological model of muscle recruitment, comprising of a motor neuron pool and associated muscle fibres, superimposed to a stimulation artefact. Experimental EMG data during different levels of volitional muscle contraction in isometric and dynamic tasks were recorded from five unimpaired individuals. Electrical stimulation artefact was removed with different techniques (i.e., none, removing samples, blanking, and interpolation) to assess filter performance across time and frequency domains, and information content (i.e., Kolmogorov-Smirnov D-value). Results The experimental results agreed with the simulations, wherein the adaptive filter outperformed the other filters when using no artefact removal or removing artefact samples from the signal, while for the blanking and interpolation artefact removal methods, the adaptive and comb filters outperformed the high-pass filter. Conclusion The adaptive and comb filters best estimated volitional muscle activity in electrically stimulated muscles. Significance Results from this study will enable the enhanced design of real-time neuroprosthesis control.This study was supported by the Motor Accident Insurance Commission, Queensland, Australia (BioSpine project) and by a Griffith University Postgraduate Research Scholarship. The authors would like to thank Prof David Lloyd for the stimulating discussions that allowed us to refine our study design and analyses.Peer ReviewedPostprint (published version

    On the Utility of Representation Learning Algorithms for Myoelectric Interfacing

    Get PDF
    Electrical activity produced by muscles during voluntary movement is a reflection of the firing patterns of relevant motor neurons and, by extension, the latent motor intent driving the movement. Once transduced via electromyography (EMG) and converted into digital form, this activity can be processed to provide an estimate of the original motor intent and is as such a feasible basis for non-invasive efferent neural interfacing. EMG-based motor intent decoding has so far received the most attention in the field of upper-limb prosthetics, where alternative means of interfacing are scarce and the utility of better control apparent. Whereas myoelectric prostheses have been available since the 1960s, available EMG control interfaces still lag behind the mechanical capabilities of the artificial limbs they are intended to steer—a gap at least partially due to limitations in current methods for translating EMG into appropriate motion commands. As the relationship between EMG signals and concurrent effector kinematics is highly non-linear and apparently stochastic, finding ways to accurately extract and combine relevant information from across electrode sites is still an active area of inquiry.This dissertation comprises an introduction and eight papers that explore issues afflicting the status quo of myoelectric decoding and possible solutions, all related through their use of learning algorithms and deep Artificial Neural Network (ANN) models. Paper I presents a Convolutional Neural Network (CNN) for multi-label movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by the successful use of CNNs in Paper I and the work of others, Paper II presents a method for automatic design of CNN architectures for use in myocontrol. Paper III introduces an ANN architecture with an appertaining training framework from which simultaneous and proportional control emerges. Paper Iv introduce a dataset of HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent Neural Network (RNN) model to decode finger forces from intramuscular EMG. Paper vI introduces a Transformer model for myoelectric interfacing that do not need additional training data to function with previously unseen users. Paper vII compares the performance of a Long Short-Term Memory (LSTM) network to that of classical pattern recognition algorithms. Lastly, paper vIII describes a framework for synthesizing EMG from multi-articulate gestures intended to reduce training burden

    The feasibility of measuring rehabilitation-induced changes in upper limb movement and cognition using robotic kinematics in chronic stroke

    Get PDF
    Background: Robotic measurement of kinematics is a potential method to detect precise rehabilitation-induced changes in upper limb movement and cognition post-stroke. To what degree robot-derived data aligns with other gold-standard upper limb measurement tools has yet to be described. Such comparisons would be important for translating such tools to research and clinical practice. Methods: Using the Kinesiological Instrument for Normal and Altered Reaching Movement (Kinarm), we compared the relationship between robot-derived values and gold-standard clinical tests of upper limb performance and cognitive function before and after a rehabilitation intervention in patients with chronic stroke. The intervention involved 10 sessions of pairing aerobic exercise with skilled motor and cognitive practice. Participants underwent motor performance and cognitive function assessments using the Kinarm endpoint robot and standardized measurement scales at baseline, after the 10 intervention sessions and 30 days later. Results: Ten participants with chronic upper limb impairment due to stroke (69.4 ± 12.9 years old: 7 males, 3 females) completed the intervention sessions. There were no significant improvements in upper limb recovery when measured using the clinical gold-standard tests. However, robotic kinematics variables showed significant changes in motor performance at follow-up. There were no significant changes in cognitive measures pre- and post-rehabilitation intervention. Conclusion: Rehabilitation-induced changes in upper limb performance and cognitive changes may be effectively detected and quantified using robotic kinematics measures

    Virtual Stiffness: A Novel Biomechanical Approach to Estimate Limb Stiffness of a Multi-Muscle and Multi-Joint System

    Get PDF
    In recent years, different groups have developed algorithms to control the stiffness of a robotic device through the electromyographic activity collected from a human operator. However, the approaches proposed so far require an initial calibration, have a complex subject-specific muscle model, or consider the activity of only a few pairs of antagonist muscles. This study described and tested an approach based on a biomechanical model to estimate the limb stiffness of a multi-joint, multi-muscle system from muscle activations. The “virtual stiffness” method approximates the generated stiffness as the stiffness due to the component of the muscle-activation vector that does not generate any endpoint force. Such a component is calculated by projecting the vector of muscle activations, estimated from the electromyographic signals, onto the null space of the linear mapping of muscle activations onto the endpoint force. The proposed method was tested by using an upper-limb model made of two joints and six Hill-type muscles and data collected during an isometric force-generation task performed with the upper limb. The null-space projection of the muscle-activation vector approximated the major axis of the stiffness ellipse or ellipsoid. The model provides a good approximation of the voluntary stiffening performed by participants that could be directly implemented in wearable myoelectric controlled devices that estimate, in real-time, the endpoint forces, or endpoint movement, from the mapping between muscle activation and force, without any additional calibrations

    Analysis of ANN and Fuzzy Logic Dynamic Modelling to Control the Wrist Exoskeleton

    Get PDF
    Human intention has long been a primary emphasis in the field of electromyography (EMG) research. This being considered, the movement of the exoskeleton hand can be accurately predicted based on the user's preferences. The EMG is a nonlinear signal formed by muscle contractions as the human hand moves and easily captured noise signal from its surroundings. Due to this fact, this study aims to estimate wrist desired velocity based on EMG signals using ANN and FL mapping methods. The output was derived using EMG signals and wrist position were directly proportional to control wrist desired velocity. Ten male subjects, ranging in age from 21 to 40, supplied EMG signal data set used for estimating the output in single and double muscles experiments. To validate the performance, a physical model of an exoskeleton hand was created using Sim-mechanics program tool. The ANN used Levenberg training method with 1 hidden layer and 10 neurons, while FL used a triangular membership function to represent muscles contraction signals amplitude at different MVC levels for each wrist position. As a result, PID was substituted to compensate fluctuation of mapping outputs, resulting in a smoother signal reading while improving the estimation of wrist desired velocity performance. As a conclusion, ANN compensates for complex nonlinear input to estimate output, but it works best with large data sets. FL allowed designers to design rules based on their knowledge, but the system will struggle due to the large number of inputs. Based on the results achieved, FL was able to show a distinct separation of wrist desired velocity hand movement when compared to ANN for similar testing datasets due to the decision making based on rules setting setup by the designer

    Graphonomics and your Brain on Art, Creativity and Innovation : Proceedings of the 19th International Graphonomics Conference (IGS 2019 – Your Brain on Art)

    Get PDF
    [Italiano]: “Grafonomia e cervello su arte, creatività e innovazione”. Un forum internazionale per discutere sui recenti progressi nell'interazione tra arti creative, neuroscienze, ingegneria, comunicazione, tecnologia, industria, istruzione, design, applicazioni forensi e mediche. I contributi hanno esaminato lo stato dell'arte, identificando sfide e opportunità, e hanno delineato le possibili linee di sviluppo di questo settore di ricerca. I temi affrontati includono: strategie integrate per la comprensione dei sistemi neurali, affettivi e cognitivi in ambienti realistici e complessi; individualità e differenziazione dal punto di vista neurale e comportamentale; neuroaesthetics (uso delle neuroscienze per spiegare e comprendere le esperienze estetiche a livello neurologico); creatività e innovazione; neuro-ingegneria e arte ispirata dal cervello, creatività e uso di dispositivi di mobile brain-body imaging (MoBI) indossabili; terapia basata su arte creativa; apprendimento informale; formazione; applicazioni forensi. / [English]: “Graphonomics and your brain on art, creativity and innovation”. A single track, international forum for discussion on recent advances at the intersection of the creative arts, neuroscience, engineering, media, technology, industry, education, design, forensics, and medicine. The contributions reviewed the state of the art, identified challenges and opportunities and created a roadmap for the field of graphonomics and your brain on art. The topics addressed include: integrative strategies for understanding neural, affective and cognitive systems in realistic, complex environments; neural and behavioral individuality and variation; neuroaesthetics (the use of neuroscience to explain and understand the aesthetic experiences at the neurological level); creativity and innovation; neuroengineering and brain-inspired art, creative concepts and wearable mobile brain-body imaging (MoBI) designs; creative art therapy; informal learning; education; forensics

    Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research

    Get PDF
    Effective control of an exoskeleton robot (ER) using a human-robot interface is crucial for assessing the robot's movements and the force they produce to generate efficient control signals. Interestingly, certain surveys were done to show off cutting-edge exoskeleton robots. The review papers that were previously published have not thoroughly examined the control strategy, which is a crucial component of automating exoskeleton systems. As a result, this review focuses on examining the most recent developments and problems associated with exoskeleton control systems, particularly during the last few years (2017–2022). In addition, the trends and challenges of cooperative control, particularly multi-information fusion, are discussed

    Evaluating EEG–EMG Fusion-Based Classification as a Method for Improving Control of Wearable Robotic Devices for Upper-Limb Rehabilitation

    Get PDF
    Musculoskeletal disorders are the biggest cause of disability worldwide, and wearable mechatronic rehabilitation devices have been proposed for treatment. However, before widespread adoption, improvements in user control and system adaptability are required. User intention should be detected intuitively, and user-induced changes in system dynamics should be unobtrusively identified and corrected. Developments often focus on model-dependent nonlinear control theory, which is challenging to implement for wearable devices. One alternative is to incorporate bioelectrical signal-based machine learning into the system, allowing for simpler controller designs to be augmented by supplemental brain (electroencephalography/EEG) and muscle (electromyography/EMG) information. To extract user intention better, sensor fusion techniques have been proposed to combine EEG and EMG; however, further development is required to enhance the capabilities of EEG–EMG fusion beyond basic motion classification. To this end, the goals of this thesis were to investigate expanded methods of EEG–EMG fusion and to develop a novel control system based on the incorporation of EEG–EMG fusion classifiers. A dataset of EEG and EMG signals were collected during dynamic elbow flexion–extension motions and used to develop EEG–EMG fusion models to classify task weight, as well as motion intention. A variety of fusion methods were investigated, such as a Weighted Average decision-level fusion (83.01 ± 6.04% accuracy) and Convolutional Neural Network-based input-level fusion (81.57 ± 7.11% accuracy), demonstrating that EEG–EMG fusion can classify more indirect tasks. A novel control system, referred to as a Task Weight Selective Controller (TWSC), was implemented using a Gain Scheduling-based approach, dictated by external load estimations from an EEG–EMG fusion classifier. To improve system stability, classifier prediction debouncing was also proposed to reduce misclassifications through filtering. Performance of the TWSC was evaluated using a developed upper-limb brace simulator. Due to simulator limitations, no significant difference in error was observed between the TWSC and PID control. However, results did demonstrate the feasibility of prediction debouncing, showing it provided smoother device motion. Continued development of the TWSC, and EEG–EMG fusion techniques will ultimately result in wearable devices that are able to adapt to changing loads more effectively, serving to improve the user experience during operation
    • …
    corecore