2,229,533 research outputs found

    THE PSYCHOMOTOR THEORY OF HUMAN MIND

    Get PDF
    This study presents a new theory to explain the neural origins of human mind. This is the psychomotor theory. The author briefly analyzed the historical development of the mind-brain theories. The close relations between psychological and motor systems were subjected to a rather detailed analysis, using psychiatric and neurological examples. The feedback circuits between mind, brain, and body were shown to occur within the mind-brain-body triad, in normal states, and psycho-neural diseases. It was stated that psychiatric signs and symptoms are coupled with motor disturbances; neurological diseases are coupled with psychological disturbances; changes in cortico-spinal motor-system activity may influence mind-brain-body triad, and vice versa. Accordingly, a psychomotor theory was created to explain the psychomotor coupling in health and disease, stating that, not themind-brain duality or unity, but themind-brain-body triad as a functional unit may be essential in health and disease, because mind does not end in the brain, but further controls movements, in a reciprocal manner; mental and motor events share the same neural substrate, cortical, and spinalmotoneurons;mental events emerging from the motoneuronal system expressed by the human language may be closely coupled with the unity of the mind-brain-body triad. So, the psychomotor theory rejects the mind-brain duality and instead advances the unity of the psychomotor system, which will have important consequences in understanding and improving the human mind, brain, and body in health and disease

    A human body model for dynamic response analysis of an integrated human-seat-controller-high speed marine craft interaction system

    No full text
    Small boats are increasingly being operated at high speed in rough weather by organisations carrying out essential missions such as the military and rescue services. Crew and passengers on these boats are exposed to continuous vibration and impacts leading to reduced crew effectiveness, fatigue and the possibility of injury. In addition to this marine craft will soon fall under the jurisdiction of the European Union Directive 2002/44/EC on the protection of workers from vibration.To assess the possibility of injury and mitigate it at the design stage of a vessel a design tool is needed to assess the vibration levels on/in the human body while the boat operates in dynamic environments. A review of current human body models is presented and a new human body model, which allows for estimates of muscle activity, is proposed. This model is supplemented by a numerical approach using finite element methods to assess the dynamic response of the integrated human-seat-controller-boat interaction system excited by wave loads or boat motions measured in full scale boat operation tests. The vibration control actuators are arranged between the seat and boat to reduce vibrations transmitted to the human body from the boat to obtain a comfortable ride condition

    A human body model for dynamic response analysis of an integrated human-seat-controller-high speed marine craft interaction system

    Get PDF
    Small boats are increasingly being operated at high speed in rough weather by organisations carrying out essential missions such as the military and rescue services. Crew and passengers on these boats are exposed to continuous vibration and impacts leading to reduced crew effectiveness, fatigue and the possibility of injury. In addition to this marine craft will soon fall under the jurisdiction of the European Union Directive 2002/44/EC on the protection of workers from vibration.To assess the possibility of injury and mitigate it at the design stage of a vessel a design tool is needed to assess the vibration levels on/in the human body while the boat operates in dynamic environments. A review of current human body models is presented and a new human body model, which allows for estimates of muscle activity, is proposed. This model is supplemented by a numerical approach using finite element methods to assess the dynamic response of the integrated human-seat-controller-boat interaction system excited by wave loads or boat motions measured in full scale boat operation tests. The vibration control actuators are arranged between the seat and boat to reduce vibrations transmitted to the human body from the boat to obtain a comfortable ride condition

    Information-Matter Bipolarity of the Human Organism and Its Fundamental Circuits: From Philosophy to Physics/Neurosciences-Based Modeling

    Get PDF
    Starting from a philosophical perspective, which states that the living structures are actually a combination between matter and information, this article presents the results on an analysis of the bipolar information-matter structure of the human organism, distinguishing three fundamental circuits for its survival, which demonstrates and supports this statement, as a base for further development of the informational model of consciousness to a general informational model of the human organism. For this, it was examined the Informational System of the Human Body and its components from the perspective of the physics/information/neurosciences concepts, showing specific functions of each of them, highlighting the correspondence of these centers with brain support areas and with their projections in consciousness, which are: Center of Acquisition and Storing of Information (CASI) reflected in consciousness as memory, Center of Decision and Command (CDC) (decision), Info-Emotional Center (IES) (emotions), Maintenance Informational System (MIS) (personal status), Genetic Transmission System (GTS) (associativity/genetic transmission) and Info Genetic Generator (IGG) related by the body development and inherited behaviors. The Info Connection (IC), detected in consciousness as trust and confidence can explain the Near-Death Experiences (NDEs) and associated phenomena. This connection is antientropic and informational, because from the multitude of uncertain possibilities is selected a certain one, helping/supporting the survival and life. The human body appears therefore as a bipolar structure, connected to two poles: information and matter. It is argued that the survival, which is the main objective of the organism, is complied in three main ways, by means of: (i) the reactive operation for adaptation by attitude; (ii) the info-genetic integration of information by epigenetic processes and genetic transmission of information for species survival, both circuits (i) and (ii) being associated to the information pole; (iii) maintenance of the material body (defined as informed matter) and its functions, associated to the matter pole of the organism. It results therefore that the informational system of the human body is supported by seven informational circuits formed by the neuro-connections between the specific zones of the brain corresponding to the informational subsystems, the cognitive centers, the sensors, transducers and execution (motor/mobile) elements. The fundamental informational circuits assuring the survival are the reactive circuit, expressible by attitude, the epigenetic/genetic circuit, absorbing and codifying information to be transmitted to the next generations, and the metabolic circuit, connected to matter (matter pole). The presented analysis allows to extend the informational modeling of consciousness to an Informational Model of Consciousness and Organism, fully describing the composition/functions of the organism in terms of information/matter and neurosciences concep

    Unique Thermal Properties of Clothing Materials.

    Get PDF
    Cloth wearing seems so natural that everyone is self-deemed knowledgeable and has some expert opinions about it. However, to clearly explain the physics involved, and hence to make predictions for clothing design or selection, it turns out to be quite challenging even for experts. Cloth is a multiphased, porous, and anisotropic material system and usually in multilayers. The human body acts as an internal heat source in a clothing situation, thus forming a temperature gradient between body and ambient. But unlike ordinary engineering heat transfer problems, the sign of this gradient often changes as the ambient temperature varies. The human body also perspires and the sweat evaporates, an effective body cooling process via phase change. To bring all the variables into analysis quickly escalates into a formidable task. This work attempts to unravel the problem from a physics perspective, focusing on a few rarely noticed yet critically important mechanisms involved so as to offer a clearer and more accurate depiction of the principles in clothing thermal comfort

    Quantitative assessment of human motion using video motion analysis

    Get PDF
    In the study of the dynamics and kinematics of the human body, a wide variety of technologies was developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development coupled with recent advances in video technology have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System to develop data on shirt-sleeved and space-suited human performance in order to plan efficient on orbit intravehicular and extravehicular activities. The system is described

    Reclaiming human machine nature

    Get PDF
    Extending and modifying his domain of life by artifact production is one of the main characteristics of humankind. From the first hominid, who used a wood stick or a stone for extending his upper limbs and augmenting his gesture strength, to current systems engineers who used technologies for augmenting human cognition, perception and action, extending human body capabilities remains a big issue. From more than fifty years cybernetics, computer and cognitive sciences have imposed only one reductionist model of human machine systems: cognitive systems. Inspired by philosophy, behaviorist psychology and the information treatment metaphor, the cognitive system paradigm requires a function view and a functional analysis in human systems design process. According that design approach, human have been reduced to his metaphysical and functional properties in a new dualism. Human body requirements have been left to physical ergonomics or "physiology". With multidisciplinary convergence, the issues of "human-machine" systems and "human artifacts" evolve. The loss of biological and social boundaries between human organisms and interactive and informational physical artifact questions the current engineering methods and ergonomic design of cognitive systems. New developpment of human machine systems for intensive care, human space activities or bio-engineering sytems requires grounding human systems design on a renewed epistemological framework for future human systems model and evidence based "bio-engineering". In that context, reclaiming human factors, augmented human and human machine nature is a necessityComment: Published in HCI International 2014, Heraklion : Greece (2014

    Motion Analysis Strategy Appropriate for 3D Kinematic Assessment of Children and Adults with Osteogenesis Imperfecta

    Get PDF
    Human motion analysis provides a quantitative means of assessing whole body and segmental motion of subjects with musculoskeletal pathologies. This chapter describes a low cost motion analysis appropriate for complete three-dimensional (3D) assessment of upper and lower extremity kinematics. The system has been designed to support lower cost outreach efforts that require accuracy and resolution on the order of classical fixed lot systems such as Vicon. The focus of this work addresses the assessment needs typically seen in adults and children with osteogenesis imperfect (OI) experiencing ambulatory and upper extremity challenges
    corecore