30,886 research outputs found

    An orientable time of flight detector for cosmic rays

    Full text link
    Cosmic ray studies, in particular UHECR, can be in general supported by a directional, easy deployable, simple and robust detector. The design of this detector is based on the time of flight between two parallel tiles of scintillator, to distinguish particle passing through in opposite directions; by fine time resolution and pretty adjustable acceptance it is possible to select upward(left)/downward(right) cosmic rays. It has been developed for an array of detectors to measure upward τ\tau from Earth-Skimming neutrino events with energy above 108GeV10^8 GeV. The properties and performances of the detector are discussed. Test results from a high noise environment are presented.Comment: 4 pages, Nuclear Instruments and methods, Proceedings Ricap0

    Improving average ranking precision in user searches for biomedical research datasets

    Full text link
    Availability of research datasets is keystone for health and life science study reproducibility and scientific progress. Due to the heterogeneity and complexity of these data, a main challenge to be overcome by research data management systems is to provide users with the best answers for their search queries. In the context of the 2016 bioCADDIE Dataset Retrieval Challenge, we investigate a novel ranking pipeline to improve the search of datasets used in biomedical experiments. Our system comprises a query expansion model based on word embeddings, a similarity measure algorithm that takes into consideration the relevance of the query terms, and a dataset categorisation method that boosts the rank of datasets matching query constraints. The system was evaluated using a corpus with 800k datasets and 21 annotated user queries. Our system provides competitive results when compared to the other challenge participants. In the official run, it achieved the highest infAP among the participants, being +22.3% higher than the median infAP of the participant's best submissions. Overall, it is ranked at top 2 if an aggregated metric using the best official measures per participant is considered. The query expansion method showed positive impact on the system's performance increasing our baseline up to +5.0% and +3.4% for the infAP and infNDCG metrics, respectively. Our similarity measure algorithm seems to be robust, in particular compared to Divergence From Randomness framework, having smaller performance variations under different training conditions. Finally, the result categorization did not have significant impact on the system's performance. We believe that our solution could be used to enhance biomedical dataset management systems. In particular, the use of data driven query expansion methods could be an alternative to the complexity of biomedical terminologies

    Tensile testing apparatus

    Get PDF
    An improved mechanical extensometer is described for use with a constant load creep test machine. The dead weight of the extensometer is counterbalanced by two pairs of weights connected through a pulley system and to rod extension and leading into the furnace where the test sample is undergoing elevated temperature (above 500 F.) tensile testing. Novel gripper surfaces, conical tip and flat surface are provided in each sampling engaging platens to reduce the grip pressure normally required for attachment of the extensometer to the specimen and reduce initial specimen bending normally associated with foil-gage metal testing

    Confocal microscopy

    Get PDF
    Chapter focusing on confocal microscopy. A confocal microscope is one in which the illumination is confined to a small volume in the specimen, the detection is confined to the same volume and the image is built up by scanning this volume over the specimen, either by moving the beam of light over the specimen or by displacing the specimen relative to a stationary beam. The chief advantage of this type of microscope is that it gives a greatly enhanced discrimination of depth relative to conventional microscopes. Commercial systems appeared in the 1980s and, despite their high cost, the world market for them is probably between 500 and 1000 instruments per annum, mainly because of their use in biomedical research in conjunction with fluorescent labelling methods. There are many books and review articles on this subject ( e.g. Pawley ( 2006) , Matsumoto( 2002), Wilson (1990) ). The purpose of this chapter is to provide an introduction to optical and engineering aspects that may be o f interest to biomedical users of confocal microscopy

    Impact of Natural Blind Spot Location on Perimetry.

    Get PDF
    We study the spatial distribution of natural blind spot location (NBSL) and its impact on perimetry. Pattern deviation (PD) values of 11,449 reliable visual fields (VFs) that are defined as clinically unaffected based on summary indices were extracted from 11,449 glaucoma patients. We modeled NBSL distribution using a two-dimensional non-linear regression approach and correlated NBSL with spherical equivalent (SE). Additionally, we compared PD values of groups with longer and shorter distances than median, and larger and smaller angles than median between NBSL and fixation. Mean and standard deviation of horizontal and vertical NBSL were 14.33° ± 1.37° and -2.06° ± 1.27°, respectively. SE decreased with increasing NBSL (correlation: r = -0.14, p \u3c 0.001). For NBSL distances longer than median distance (14.32°), average PD values decreased in the upper central (average difference for significant points (ADSP): -0.18 dB) and increased in the lower nasal VF region (ADSP: 0.14 dB). For angles in the direction of upper hemifield relative to the median angle (-8.13°), PD values decreased in lower nasal (ADSP: -0.11 dB) and increased in upper temporal VF areas (ADSP: 0.19 dB). In conclusion, we demonstrate that NBSL has a systematic effect on the spatial distribution of VF sensitivity

    Does Licensing Resolve Hold Up in the Patent Thicket?

    Get PDF
    In a patent thicket licensing provides a mechanism to either avoid or resolve hold up. We study the choice between ex ante licensing to avoid hold up and ex post licensing to resolve it. Firms’ choice of licensing contract is studied in the context of a patent portfolio race. We show that high expected blocking leads to ex ante licensing while ex post licensing arises if expected blocking is low but realized blocking is high. Also, ex ante licensing reduces firms’ R&D incentives. A sample selection model of licensing is derived from the theoretical model. In this framework theoretical predictions on effects of blocking are tested with data from the semiconductor industry. We show that licensing helps firms to resolve blocking. However, licensing is not a cure all: it decreases as fragmentation of property rights increases and arises mainly between large firms with similar market shares. Using a treatment effects model we also confirm the prediction that ex ante licensing reduces the level of R&D investment
    corecore