37 research outputs found

    Consensus on Nonlinear Spaces

    Full text link
    peer reviewedConsensus problems have attracted significant attention in the control community over the last decade. They act as a rich source of new mathematical problems pertaining to the growing field of cooperative and distributed control. This paper is an introduction to consensus problems whose underlying state-space is not a linear space, but instead a highly symmetric nonlinear space such as the circle and other relevant generalizations. A geometric approach is shown to highlight the connection between several fundamental models of consensus, synchronization, and coordination, to raise significant global convergence issues not present in linear models, and to be relevant for a number of engineering applications, including the design of planar or spatial coordinated motions

    Neural dynamics of social behavior : An evolutionary and mechanistic perspective on communication, cooperation, and competition among situated agents

    Get PDF
    Social behavior can be found on almost every level of life, ranging from microorganisms to human societies. However, explaining the evolutionary emergence of cooperation, communication, or competition still challenges modern biology. The most common approaches to this problem are based on game-theoretic models. The problem is that these models often assume fixed and limited rules and actions that individual agents can choose from, which excludes the dynamical nature of the mechanisms that underlie the behavior of living systems. So far, there exists a lack of convincing modeling approaches to investigate the emergence of social behavior from a mechanistic and evolutionary perspective. Instead of studying animals, the methodology employed in this thesis combines several aspects from alternative approaches to study behavior in a rather novel way. Robotic models are considered as individual agents which are controlled by recurrent neural networks representing non-linear dynamical system. The topology and parameters of these networks are evolved following an open-ended evolution approach, that is, individuals are not evaluated on high-level goals or optimized for specific functions. Instead, agents compete for limited resources to enhance their chance of survival. Further, there is no restriction with respect to how individuals interact with their environment or with each other. As its main objective, this thesis aims at a complementary approach for studying not only the evolution, but also the mechanisms of basic forms of communication. For this purpose it can be shown that a robot does not necessarily have to be as complex as a human, not even as complex as a bacterium. The strength of this approach is that it deals with rather simple, yet complete and situated systems, facing similar real world problems as animals do, such as sensory noise or dynamically changing environments. The experimental part of this thesis is substantiated in a five-part examination. First, self-organized aggregation patterns are discussed. Second, the advantages of evolving decentralized control with respect to behavioral robustness and flexibility is demonstrated. Third, it is shown that only minimalistic local acoustic communication is required to coordinate the behavior of large groups. This is followed by investigations of the evolutionary emergence of communication. Finally, it is shown how already evolved communicative behavior changes during further evolution when a population is confronted with competition about limited environmental resources. All presented experiments entail thorough analysis of the dynamical mechanisms that underlie evolved communication systems, which has not been done so far in the context of cooperative behavior. This framework leads to a better understanding of the relation between intrinsic neurodynamics and observable agent-environment interactions. The results discussed here provide a new perspective on the evolution of cooperation because they deal with aspects largely neglected in traditional approaches, aspects such as embodiment, situatedness, and the dynamical nature of the mechanisms that underlie behavior. For the first time, it can be demonstrated how noise influences specific signaling strategies and that versatile dynamics of very small-scale neural networks embedded in sensory-motor feedback loops give rise to sophisticated forms of communication such as signal coordination, cooperative intraspecific communication, and, most intriguingly, aggressive interspecific signaling. Further, the results demonstrate the development of counteractive niche construction based on a modification of communication strategies which generates an evolutionary feedback resulting in an active reduction of selection pressure, which has not been shown so far. Thus, the novel findings presented here strongly support the complementary nature of robotic experiments to study the evolution and mechanisms of communication and cooperation.</p

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves

    Synchronization of complex dynamical networks with fractional order

    Get PDF
    Complex dynamical networks (CDN) can be applied to many areas in real world, from medicine, biology, Internet to sociology. Study on CDNs has drawn great attention in recent years. Nodes in a CDN can be modelled as systems represented by differential equations. Study has shown that fractional order differential equations (DF) can better represent some real world systems than integer-order DFs. This research work focuses on synchronization in fractional CDNs.&amp;nbsp; A literature review on CDNs with fractional order has summarized the latest works in this area.&amp;nbsp; Fractional chaotic systems are studied in our initial investigation.&amp;nbsp; Fractional calculus is introduced and the relevant fundamentals to model, describe and analyse dynamical networks are presented. It is shown that the structure and topological characteristics of a network can have a big impact on its synchronizability. Synchronizability and its various interpretations in dynamical networks are studied. To synchronize a CDN efficiently, controllers are generally needed. Controller design is one of the main tasks in this research. Our first design is a new sliding mode control to synchronize a dynamical network with two nodes. Its stability has been proven and verified by simulations.&amp;nbsp; Its convergence speed outperforms Vaidyanathan&#039;s scheme, a well-recognized scheme in this area. The design can be generalized to CDNs with more nodes.&amp;nbsp; As many applications can be modelled as CDNs with node clustering, a different sliding mode control is designed for cluster synchronization of a CDN with fractional order. Its stability is proven by using Lyapunov method. Its convergence and efficiency is shown in a simulation. Besides these nonlinear methods mentioned, linear control is also studied intensively for the synchronization.&amp;nbsp; A novel linear method for synchronization of fractional CDNs using a new fractional Proportional-Integral (PI) pinning control is proposed.&amp;nbsp; Its stability is proven and the synchronization criteria are obtained. The criteria have been simplified using two corollaries so the right value for the variables can be easily assigned. The proposed method is compared with the conventional linear method which uses Proportional (P) controller. In the comparison, the mean squared error function is used. The function measures the average of the squared errors and it is an instant indicator of the synchronization efficiency. A numerical simulation is repeated 100 times to obtain the averages over these runs. Each simulation has different random initial values for both controllers. The average of the errors in all the 100 simulations is obtained and the area under the function curve is defined as an overall performance index (OPI), which indicates the controller&#039;s overall performance. In control, small overshoot is always desired. In our work, the error variation is also used as a measure.&amp;nbsp; The maximum variation from the average of 100 simulations is calculated and compared for both methods. With all the statistical comparisons, it is clear that with the same power consumption, the proposed method outperforms the conventional one and achieves faster and smoother synchronization. Communication constraints exist in most real world CDNs. Communication constraints and their impact on control and synchronization of CDNs with fractional order are investigated in our study. A new adaptive method for synchronizing fractional CDN with disturbance and uncertainty is designed. Its stability is proven and its synchronization criteria are obtained for both fractional CDN with known and unknown parameters. Random disturbance is also included in both cases. Our results show that the new method is efficient in synchronizing CDNs with presence of both disturbance and uncertainty

    Synchronization of Complex-Valued Dynamical Networks

    Get PDF
    Dynamical networks (DNs) have been broadly applied to describe natural and human systems consisting of a large number of interactive individuals. Common examples include Internet, food webs, social networks, neural networks, etc. One of the crucial and significant collective behaviors of DNs is known as synchronization. In reality, synchronization phenomena may occur either inside a network or between two or more networks, which are called “inner synchronization” and “outer synchronization”, respectively. On the other hand, many real systems are more suitably characterized by complex-valued dynamical systems, such as quantum systems, complex Lorenz system, and complex-valued neural networks. The main focus of this thesis is on synchronization of complex-valued dynamical networks (CVDNs). In this thesis, we firstly design a delay-dependent pinning impulsive controller to study synchronization of time-delay CVDNs. By taking advantage of the Lyapunov function in the complex field, some delay-independent synchronization criteria of CVDNs are established, which generalizes some existing synchronization results. Then, by employing the Lyapunov functional in the complex field, several delay-dependent sufficient conditions on synchronization of CVDNs with various sizes of delays are constructed. Moreover, we study synchronization of CVDNs with time-varying delays under distributed impulsive controllers. By taking advantage of time-varying Lyapunov function/ functional in the complex domain, several synchronization criteria for CVDNs with time-varying delays are derived in terms of complex-valued linear matrix inequalities (LMIs). Then, we propose a memory-based event-triggered impulsive control (ETIC) scheme with three levels of events in the complex field to investigate the synchronization problem of CVDNs with both discrete and distributed time delays, and we further consider an event-triggered pinning impulsive control (ETPIC) scheme combining the proposed ETIC and a pinning algorithm to study synchronization of time-delay CVDNs. Results show that the proposed ETIC scheme and ETPIC scheme can effectively synchronize CVDNs with the desired trajectory. Secondly, we study generalized outer synchronization of drive-response time-delayed CVDNs via hybrid control. A hybrid controller is proposed in the complex domain to construct response complex-valued networks. Some generalized outer synchronization criteria for drive-response CVDNs are established, which extend the existing generalized outer synchronization results to the complex field. Thirdly, we study the average-consensus problem of potential complex-valued multi-agent systems. A complex-variable hybrid consensus protocol is proposed, and time delays are taken into account in both the continuous-time protocol and the discrete-time protocol. Delay-dependent sufficient conditions are established to guarantee the proposed complex-variable hybrid consensus protocol can solve the average-consensus problem. Lastly, as a practical application for complex-valued networked systems, the synchronization problem of master-slave complex-valued neural networks (CVNNs) is studied via hybrid control and delayed ETPIC, respectively. We also investigate the state estimation problem of CVNNs by designing the adaptive impulsive observer in the complex field

    The 1989 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    The following topics are addressed: mission operations support; planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; and modeling and simulation

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data
    corecore