218 research outputs found

    Exascale Deep Learning for Climate Analytics

    Full text link
    We extract pixel-level masks of extreme weather patterns using variants of Tiramisu and DeepLabv3+ neural networks. We describe improvements to the software frameworks, input pipeline, and the network training algorithms necessary to efficiently scale deep learning on the Piz Daint and Summit systems. The Tiramisu network scales to 5300 P100 GPUs with a sustained throughput of 21.0 PF/s and parallel efficiency of 79.0%. DeepLabv3+ scales up to 27360 V100 GPUs with a sustained throughput of 325.8 PF/s and a parallel efficiency of 90.7% in single precision. By taking advantage of the FP16 Tensor Cores, a half-precision version of the DeepLabv3+ network achieves a peak and sustained throughput of 1.13 EF/s and 999.0 PF/s respectively.Comment: 12 pages, 5 tables, 4, figures, Super Computing Conference November 11-16, 2018, Dallas, TX, US

    Tools for analyzing parallel I/O

    Get PDF
    Parallel application I/O performance often does not meet user expectations. Additionally, slight access pattern modifications may lead to significant changes in performance due to complex interactions between hardware and software. These issues call for sophisticated tools to capture, analyze, understand, and tune application I/O. In this paper, we highlight advances in monitoring tools to help address these issues. We also describe best practices, identify issues in measure- ment and analysis, and provide practical approaches to translate parallel I/O analysis into actionable outcomes for users, facility operators, and researchers

    The Mont-Blanc Project: First Phase Successfully Finished

    Full text link
    Running from October 2011 to June 2015, the aim of the European project Mont-Blanc has been to develop an approach to Exascale computing based on embedded power-efficient technology. The main goals of the project were to i) build an HPC prototype using currently available energy-efficient embedded technology, ii) design a Next Generation system to overcome the limitations of the built prototype and iii) port a set of representative Exascale applications to the system. This article summarises the contributions from the Leibniz Supercomputing Centre (LRZ) and the Juelich Supercomputing Centre (JSC), Germany, to the Mont-Blanc project.Comment: 5 pages, 3 figure

    05501 Abstracts Collection -- Automatic Performance Analysis

    Get PDF
    From 12.12.05 to 16.12.05, the Dagstuhl Seminar 05501 ``Automatic Performance Analysis\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    10181 Abstracts Collection -- Program Development for Extreme-Scale Computing

    Get PDF
    From May 2nd to May 7th, 2010, the Dagstuhl Seminar 10181 ``Program Development for Extreme-Scale Computing \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. Links to extended abstracts or full papers are provided, if available

    Software Roadmap to Plug and Play Petaflop/s

    Full text link

    A reference model for integrated energy and power management of HPC systems

    Get PDF
    Optimizing a computer for highest performance dictates the efficient use of its limited resources. Computers as a whole are rather complex. Therefore, it is not sufficient to consider optimizing hardware and software components independently. Instead, a holistic view to manage the interactions of all components is essential to achieve system-wide efficiency. For High Performance Computing (HPC) systems, today, the major limiting resources are energy and power. The hardware mechanisms to measure and control energy and power are exposed to software. The software systems using these mechanisms range from firmware, operating system, system software to tools and applications. Efforts to improve energy and power efficiency of HPC systems and the infrastructure of HPC centers achieve perpetual advances. In isolation, these efforts are unable to cope with the rising energy and power demands of large scale systems. A systematic way to integrate multiple optimization strategies, which build on complementary, interacting hardware and software systems is missing. This work provides a reference model for integrated energy and power management of HPC systems: the Open Integrated Energy and Power (OIEP) reference model. The goal is to enable the implementation, setup, and maintenance of modular system-wide energy and power management solutions. The proposed model goes beyond current practices, which focus on individual HPC centers or implementations, in that it allows to universally describe any hierarchical energy and power management systems with a multitude of requirements. The model builds solid foundations to be understandable and verifiable, to guarantee stable interaction of hardware and software components, for a known and trusted chain of command. This work identifies the main building blocks of the OIEP reference model, describes their abstract setup, and shows concrete instances thereof. A principal aspect is how the individual components are connected, interface in a hierarchical manner and thus can optimize for the global policy, pursued as a computing center's operating strategy. In addition to the reference model itself, a method for applying the reference model is presented. This method is used to show the practicality of the reference model and its application. For future research in energy and power management of HPC systems, the OIEP reference model forms a cornerstone to realize --- plan, develop and integrate --- innovative energy and power management solutions. For HPC systems themselves, it supports to transparently manage current systems with their inherent complexity, it allows to integrate novel solutions into existing setups, and it enables to design new systems from scratch. In fact, the OIEP reference model represents a basis for holistic efficient optimization.Computer auf höchstmögliche Rechenleistung zu optimieren bedingt Effizienzmaximierung aller limitierenden Ressourcen. Computer sind komplexe Systeme. Deshalb ist es nicht ausreichend, Hardware und Software isoliert zu betrachten. Stattdessen ist eine Gesamtsicht des Systems notwendig, um die Interaktionen aller Einzelkomponenten zu organisieren und systemweite Optimierungen zu ermöglichen. Für Höchstleistungsrechner (HLR) ist die limitierende Ressource heute ihre Leistungsaufnahme und der resultierende Gesamtenergieverbrauch. In aktuellen HLR-Systemen sind Energie- und Leistungsaufnahme programmatisch auslesbar als auch direkt und indirekt steuerbar. Diese Mechanismen werden in diversen Softwarekomponenten von Firmware, Betriebssystem, Systemsoftware bis hin zu Werkzeugen und Anwendungen genutzt und stetig weiterentwickelt. Durch die Komplexität der interagierenden Systeme ist eine systematische Optimierung des Gesamtsystems nur schwer durchführbar, als auch nachvollziehbar. Ein methodisches Vorgehen zur Integration verschiedener Optimierungsansätze, die auf komplementäre, interagierende Hardware- und Softwaresysteme aufbauen, fehlt. Diese Arbeit beschreibt ein Referenzmodell für integriertes Energie- und Leistungsmanagement von HLR-Systemen, das „Open Integrated Energy and Power (OIEP)“ Referenzmodell. Das Ziel ist ein Referenzmodell, dass die Entwicklung von modularen, systemweiten energie- und leistungsoptimierenden Sofware-Verbunden ermöglicht und diese als allgemeines hierarchisches Managementsystem beschreibt. Dies hebt das Modell von bisherigen Ansätzen ab, welche sich auf Einzellösungen, spezifischen Software oder die Bedürfnisse einzelner Rechenzentren beschränken. Dazu beschreibt es Grundlagen für ein planbares und verifizierbares Gesamtsystem und erlaubt nachvollziehbares und sicheres Delegieren von Energie- und Leistungsmanagement an Untersysteme unter Aufrechterhaltung der Befehlskette. Die Arbeit liefert die Grundlagen des Referenzmodells. Hierbei werden die Einzelkomponenten der Software-Verbunde identifiziert, deren abstrakter Aufbau sowie konkrete Instanziierungen gezeigt. Spezielles Augenmerk liegt auf dem hierarchischen Aufbau und der resultierenden Interaktionen der Komponenten. Die allgemeine Beschreibung des Referenzmodells erlaubt den Entwurf von Systemarchitekturen, welche letztendlich die Effizienzmaximierung der Ressource Energie mit den gegebenen Mechanismen ganzheitlich umsetzen können. Hierfür wird ein Verfahren zur methodischen Anwendung des Referenzmodells beschrieben, welches die Modellierung beliebiger Energie- und Leistungsverwaltungssystemen ermöglicht. Für Forschung im Bereich des Energie- und Leistungsmanagement für HLR bildet das OIEP Referenzmodell Eckstein, um Planung, Entwicklung und Integration von innovativen Lösungen umzusetzen. Für die HLR-Systeme selbst unterstützt es nachvollziehbare Verwaltung der komplexen Systeme und bietet die Möglichkeit, neue Beschaffungen und Entwicklungen erfolgreich zu integrieren. Das OIEP Referenzmodell bietet somit ein Fundament für gesamtheitliche effiziente Systemoptimierung

    Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx) Annual Report - Year 2

    Full text link
    corecore