198 research outputs found

    A History Querying Tool and Its Application to Detect Multi-version Refactorings

    Full text link

    Experiences In Migrating An Industrial Application To Aspects

    Get PDF
    Aspect-Oriented Software Development (AOSD) is a paradigm aiming to solve problems of object-oriented programming (OOP). With normal OOP it’s often unlikely to accomplish fine system modularity due to crosscutting concerns being scattered and tangled throughout the system. AOSD resolves this problem by its capability to crosscut the regular code and as a consequence transfer the crosscutting concerns to a single model called aspect. This thesis describes an experiment on industrial application wherein the effectiveness of aspect-oriented techniques is explained in migration the OOP application into aspects. The experiment goals at first to identify the crosscutting concerns in source code of the industrial application and transform these concerns to a functionally equivalent aspect-oriented version. In addition to presenting experiences gained through the experiment, the thesis aims to provide practical guidance of aspect solutions in a real application

    Generic Quality-Aware Refactoring and Co-Refactoring in Heterogeneous Model Environments

    Get PDF
    Software has been subject to change, at all times, in order to make parts of it, for instance, more reusable, better to understand by humans, or to increase efficiency under a certain point of view. Restructurings of existing software can be complex. To prevent developers from doing this manually, they got tools at hand being able to apply such restructurings automatically. These automatic changes of existing software to improve quality while preserving its behaviour is called refactoring. Refactoring is well investigated for programming languages and mature tools exist for executing refactorings in integrated development environments (IDEs). In recent years, the development paradigm of Model-Driven Software Development (MDSD) became more and more popular and we experience a shift in the sense that development artefacts are considered as models which conform metamodels. This can be understood as abstraction, which resulted in the trend that a plethora of new so-called model-based Domain-Specific Languages (DSLs) arose. DSLs have become an integral part in the MDSD and it is obvious that models are subject to change, as well. Thus, refactoring support is required for DSLs in order to prevent users from doing it manually. The problem is that the amount of DSLs is huge and refactorings should not be implemented for new for each of them, since they are quite similar from an abstract viewing. Existing approaches abstract from the target language, which is not flexible enough because some assumptions about the languages have to be made and arbitrary DSLs are not supported. Furthermore, the relation between a strategy which finds model deficiencies that should be improved, a resolving refactoring, and the improved quality is only implicit. Focussing on a particular quality and only detecting those deficiencies deteriorating this quality is difficult, and elements of detected deficient structures cannot be referred to in the resolving refactoring. In addition, heterogeneous models in an IDE might be connected physically or logically, thus, they are dependent. Finding such connections is difficult and can hardly be achieved manually. Applying a restructuring in a model implied by a refactoring in a dependent model must also be a refactoring, in order to preserve the meaning. Thus, this kind of dependent refactorings require an appropriate abstraction mechanism, since they must be specified for dependent models of different DSLs. The first contribution, Role-Based Generic Model Refactoring, uses role models to abstract from refactorings instead of the target languages. Thus, participating structures in a refactoring can be specified generically by means of role models. As a consequence, arbitrary model-based DSLs are supported, since this approach does not make any assumptions regarding the target languages. Our second contribution, Role-Based Quality Smells, is a conceptual framework and correlates deficiencies, their deteriorated qualities, and resolving refactorings. Roles are used to abstract from the causing structures of a deficiency, which then are subject to resolving refactorings. The third contribution, Role-Based Co-Refactoring, employs the graph-logic isomorphism to detect dependencies between models. Dependent refactorings, which we call co-refactorings, are specified on the basis of roles for being independent from particular target DSLs. All introduced concepts are implemented in our tool Refactory. An evaluation in different scenarios complements the thesis. It shows that role models emerged as very powerful regarding the reuse of generic refactorings in arbitrary languages. Role models are suited as an interface for certain structures which are to be refactored, scanned for deficiencies, or co-refactored. All of the presented approaches benefit from it.:List of Figures xv List of Tables xvii List of Listings xix 1. Introduction 1 1.1. Language-Tool Generation Without Consideration Of Time And Space . . . . . 4 1.2. Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3. Generic Quality-Aware Refactoring and Co-Refactoring in Heterogeneous Model Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. Foundations 15 2.1. Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2. Model-Driven Software Development . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1. Levels of Abstraction and Metamodelling . . . . . . . . . . . . . . . . . 17 2.2.2. Model Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3. Role-Based Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3. Related Work 23 3.1. Model Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2. Determination of Quality-Related De ciencies . . . . . . . . . . . . . . . . . . . 32 3.2.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.2. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3. Co-Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.2. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4. Role-Based Generic Model Refactoring 51 4.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2. Specifying Generic Refactorings with Role Models . . . . . . . . . . . . . . . . . 53 4.2.1. Specifying Structural Constraints using Role Models . . . . . . . . . . . 55 4.2.2. Mapping Roles to Language Concepts Using Role Mappings . . . . . . . 57 4.2.3. Specifying Language-Independent Transformations using Refactoring Speci cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.4. Composition of Refactorings . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3. Preserving Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5. Suggesting Role Mappings as Concrete Refactorings 73 5.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2. Automatic Derivation of Suggestions for Role Mappings with Graph Querying . 74 5.3. Reduction of the Number of Valid Matches . . . . . . . . . . . . . . . . . . . . . 76 5.4. Comparison to Model Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6. Role-Based Quality Smells as Refactoring Indicator 79 6.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2. Correlating Model De ciencies, Qualities and Refactorings . . . . . . . . . . . . 80 6.2.1. Quality Smell Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.2.2. Quality Smell Calculation Repository . . . . . . . . . . . . . . . . . . . . 85 6.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7. A Quality Smell Catalogue for Android Applications 89 7.1. Quality Smell Catalogue Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.2. Acquiring Quality Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.3. Structure-Based Quality Smells—A Detailed Example . . . . . . . . . . . . . . . 92 7.3.1. The Pattern Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3.2. Quality Smell: Interruption from Background . . . . . . . . . . . . . . . 93 7.4. Quality Smells for Android Applications . . . . . . . . . . . . . . . . . . . . . . 96 7.4.1. Quality Smell: Data Transmission Without Compression . . . . . . . . . 96 7.4.2. Quality Smell: Dropped Data . . . . . . . . . . . . . . . . . . . . . . . . 98 7.4.3. Quality Smell: Durable WakeLock . . . . . . . . . . . . . . . . . . . . . 98 7.4.4. Quality Smell: Internal Use of Getters/Setters . . . . . . . . . . . . . . . 99 7.4.5. Quality Smell: No Low Memory Resolver . . . . . . . . . . . . . . . . . 101 7.4.6. Quality Smell: Rigid AlarmManager . . . . . . . . . . . . . . . . . . . . 101 7.4.7. Quality Smell: Unclosed Closeable . . . . . . . . . . . . . . . . . . . . . 102 7.4.8. Quality Smell: Untouchable . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 8. Role-Based Co-Refactoring in Multi-Language Development Environments 105 8.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.2. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.3. Dependency Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8.3.1. Categories of Model Dependencies . . . . . . . . . . . . . . . . . . . . . 108 8.3.2. When to Determine Model Dependencies . . . . . . . . . . . . . . . . . 110 8.3.3. How to Determine Model Dependencies . . . . . . . . . . . . . . . . . . 111 8.4. Co-Refactoring Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.4.1. Specifying Coupled Refactorings with Co-Refactoring Speci cations . . 114 8.4.2. Specifying Bindings for Co-Refactorings . . . . . . . . . . . . . . . . . . 116 8.4.3. Determination of Co-Refactoring Speci cations . . . . . . . . . . . . . . 118 8.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9. Refactory: An Eclipse Tool For Quality-Aware Refactoring and Co-Refactoring 121 9.1. Refactoring Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 9.1.1. Role Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 9.1.2. Refactoring Speci cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9.1.3. Role Model Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 9.1.4. Refactoring Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 9.1.5. Custom Refactoring Extensions . . . . . . . . . . . . . . . . . . . . . . . 129 9.1.6. Pre- and Post-conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 9.1.7. Integration Into the Eclipse Refactoring Framework . . . . . . . . . . . . 130 9.2. Quality Smell Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 9.3. Co-Refactoring Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.3.1. Concrete Syntax of a CoRefSpec . . . . . . . . . . . . . . . . . . . . . . . 138 9.3.2. Expression Evaluation by Using an Expression Language . . . . . . . . . 138 9.3.3. UI and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 9.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10. Evaluation 143 10.1. Case Study: Reuse of Generic Refactorings in many DSLs . . . . . . . . . . . . . 143 10.1.1. Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 10.1.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 10.1.3. Experience Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 10.2. Case Study: Suggestion of Valid Role Mappings . . . . . . . . . . . . . . . . . . 147 10.2.1. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 10.2.2. Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.3. Proof of Concept: Co-Refactoring OWL and Ecore Models . . . . . . . . . . . . 155 10.3.1. Coupled OWL-Ecore Refactorings . . . . . . . . . . . . . . . . . . . . . 156 10.3.2. Realisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 10.3.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 11. Summary, Conclusion and Outlook 161 11.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 11.2. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 11.3. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Appendix 169 A. List of Role Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 B. Comparison to Role Feature Model . . . . . . . . . . . . . . . . . . . . . . . . . 171 C. Complete List of Role Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 D. List of all IncPL Patterns for Detecting Quality Smells . . . . . . . . . . . . . . . 176 E. Post-Processor of the Extract CompositeState refactoring for UML State Machines 183 F. Speci cation of the Conference Language . . . . . . . . . . . . . . . . . . . . . . 185 List of Abbreviations 187 Bibliography 19

    Mining and Managing Big Data Refactoring for Design Improvement: Are We There Yet?

    Get PDF
    Refactoring is a set of code changes applied to improve the internal structure of a program, without altering its external behavior. With the rise of continuous integration and the awareness of the necessity of managing technical debt, refactoring has become even more popular in recent software builds. Recent studies indicate that developers often perform refactorings. If we consider all refactorings performed across all projects, this consists of the refactoring knowledge that represents a rich source of information that can be useful for both developers and practitioners to better understand how refactoring is being applied in practice. However, mining, processing, and extracting useful insights, from this plethora of refactorings, seems to be challenging. In this book chapter, we take a dive into how refactoring can be mined and preprocessed. We discuss all design concepts and structural metrics that can also be mined along with refactoring operations to understand their impact better. We further investigate the many practical challenges for such extraction. The volume, velocity, and variety of extracted data require careful planning. We outline the appropriate techniques from a large number of available technologies for such system implementation

    Design and Implementation of a Conceptual Modeling Assistant (CMA)

    Get PDF
    This Master's Thesis de nes an architecture for a Conceptual Modeling Assistant (CMA) along with an implementation of a running prototype. Our CMA is a piece of software that runs on top of current modeling tools whose purpose is to collaborate with the conceptual modelers while developing a conceptual schema. The main functions of our CMA are to actively criticize the state of a conceptual schema, to suggest actions to do in order to improve the conceptual schema, and to o er new operations to automatize building a schema. On the one hand, the presented architecture assumes that the CMA has to be adapted to a modeling tool. Thus, the CMA permits the inclusion of new features, such as the detection of new defects to be criticized and new operations a modeler can execute, in a modeling tool. As a result, all modeling tools to which the CMA is adapted bene t of all these features without further work. On the other hand, the construction of our prototype involves three steps: the de nition of a simple, custom modeling tool; the implementation of the CMA; and the adaptation of the CMA to the custom modeling tool. Furthermore, we also present and implement some examples of new features that can be added to the CMA

    The Requirements Editor RED

    Get PDF

    Towards using intelligent techniques to assist software specialists in their tasks

    Full text link
    L’automatisation et l’intelligence constituent des préoccupations majeures dans le domaine de l’Informatique. Avec l’évolution accrue de l’Intelligence Artificielle, les chercheurs et l’industrie se sont orientés vers l’utilisation des modèles d’apprentissage automatique et d’apprentissage profond pour optimiser les tâches, automatiser les pipelines et construire des systèmes intelligents. Les grandes capacités de l’Intelligence Artificielle ont rendu possible d’imiter et même surpasser l’intelligence humaine dans certains cas aussi bien que d’automatiser les tâches manuelles tout en augmentant la précision, la qualité et l’efficacité. En fait, l’accomplissement de tâches informatiques nécessite des connaissances, une expertise et des compétences bien spécifiques au domaine. Grâce aux puissantes capacités de l’intelligence artificielle, nous pouvons déduire ces connaissances en utilisant des techniques d’apprentissage automatique et profond appliquées à des données historiques représentant des expériences antérieures. Ceci permettra, éventuellement, d’alléger le fardeau des spécialistes logiciel et de débrider toute la puissance de l’intelligence humaine. Par conséquent, libérer les spécialistes de la corvée et des tâches ordinaires leurs permettra, certainement, de consacrer plus du temps à des activités plus précieuses. En particulier, l’Ingénierie dirigée par les modèles est un sous-domaine de l’informatique qui vise à élever le niveau d’abstraction des langages, d’automatiser la production des applications et de se concentrer davantage sur les spécificités du domaine. Ceci permet de déplacer l’effort mis sur l’implémentation vers un niveau plus élevé axé sur la conception, la prise de décision. Ainsi, ceci permet d’augmenter la qualité, l’efficacité et productivité de la création des applications. La conception des métamodèles est une tâche primordiale dans l’ingénierie dirigée par les modèles. Par conséquent, il est important de maintenir une bonne qualité des métamodèles étant donné qu’ils constituent un artéfact primaire et fondamental. Les mauvais choix de conception, ainsi que les changements conceptuels répétitifs dus à l’évolution permanente des exigences, pourraient dégrader la qualité du métamodèle. En effet, l’accumulation de mauvais choix de conception et la dégradation de la qualité pourraient entraîner des résultats négatifs sur le long terme. Ainsi, la restructuration des métamodèles est une tâche importante qui vise à améliorer et à maintenir une bonne qualité des métamodèles en termes de maintenabilité, réutilisabilité et extensibilité, etc. De plus, la tâche de restructuration des métamodèles est délicate et compliquée, notamment, lorsqu’il s’agit de grands modèles. De là, automatiser ou encore assister les architectes dans cette tâche est très bénéfique et avantageux. Par conséquent, les architectes de métamodèles pourraient se concentrer sur des tâches plus précieuses qui nécessitent de la créativité, de l’intuition et de l’intelligence humaine. Dans ce mémoire, nous proposons une cartographie des tâches qui pourraient être automatisées ou bien améliorées moyennant des techniques d’intelligence artificielle. Ensuite, nous sélectionnons la tâche de métamodélisation et nous essayons d’automatiser le processus de refactoring des métamodèles. A cet égard, nous proposons deux approches différentes: une première approche qui consiste à utiliser un algorithme génétique pour optimiser des critères de qualité et recommander des solutions de refactoring, et une seconde approche qui consiste à définir une spécification d’un métamodèle en entrée, encoder les attributs de qualité et l’absence des design smells comme un ensemble de contraintes et les satisfaire en utilisant Alloy.Automation and intelligence constitute a major preoccupation in the field of software engineering. With the great evolution of Artificial Intelligence, researchers and industry were steered to the use of Machine Learning and Deep Learning models to optimize tasks, automate pipelines, and build intelligent systems. The big capabilities of Artificial Intelligence make it possible to imitate and even outperform human intelligence in some cases as well as to automate manual tasks while rising accuracy, quality, and efficiency. In fact, accomplishing software-related tasks requires specific knowledge and skills. Thanks to the powerful capabilities of Artificial Intelligence, we could infer that expertise from historical experience using machine learning techniques. This would alleviate the burden on software specialists and allow them to focus on valuable tasks. In particular, Model-Driven Engineering is an evolving field that aims to raise the abstraction level of languages and to focus more on domain specificities. This allows shifting the effort put on the implementation and low-level programming to a higher point of view focused on design, architecture, and decision making. Thereby, this will increase the efficiency and productivity of creating applications. For its part, the design of metamodels is a substantial task in Model-Driven Engineering. Accordingly, it is important to maintain a high-level quality of metamodels because they constitute a primary and fundamental artifact. However, the bad design choices as well as the repetitive design modifications, due to the evolution of requirements, could deteriorate the quality of the metamodel. The accumulation of bad design choices and quality degradation could imply negative outcomes in the long term. Thus, refactoring metamodels is a very important task. It aims to improve and maintain good quality characteristics of metamodels such as maintainability, reusability, extendibility, etc. Moreover, the refactoring task of metamodels is complex, especially, when dealing with large designs. Therefore, automating and assisting architects in this task is advantageous since they could focus on more valuable tasks that require human intuition. In this thesis, we propose a cartography of the potential tasks that we could either automate or improve using Artificial Intelligence techniques. Then, we select the metamodeling task and we tackle the problem of metamodel refactoring. We suggest two different approaches: A first approach that consists of using a genetic algorithm to optimize set quality attributes and recommend candidate metamodel refactoring solutions. A second approach based on mathematical logic that consists of defining the specification of an input metamodel, encoding the quality attributes and the absence of smells as a set of constraints and finally satisfying these constraints using Alloy

    Improving the Accuracy of Refactoring Detection

    Get PDF
    With the development of refactoring technology, refactoring detection technology as its reverse technology has also been greatly progressed and applied, the technology has important significance and role for code optimisation, code review and code reliability. Over the past 20 years, the refactoring detection technique has evolved from a theoretical concept to be mature approaches and tools. However, due to the various complexities that arise when refactoring code, there are still some problems with these detection tools at work: selection of tools, detection of nested refactorings, false negatives due to matching algorithms, etc. As the requirements for detection increase, the pursuit of better detection performance (precision and recall) and more generalised detection tools has become a major research goal for my PhD. The main research components of this paper include: Firstly, at the beginning of my research I conducted a meta-analysis of refactoring detection and evaluated the detection performance of four common refactoring detection tools under the same benchmark, analysed and compared their strengths and weaknesses, and identified new research questions and research directions. Secondly, I identified the study and detection of nested refactorings as a research blind spot in existing approaches, so I conducted a demonstration of the feasibility of nesting multiple refactor types with each other; in addition, I created an approach that can detect nested refactorings based on a single refactoring data using manually defined refactoring features combined with a random forest algorithm, thus being able to detect all 35 semantically meaningful nestings of them with 91.4% accuracy. Then I focused on the features that emerged during the refactoring process, mining the refactoring information in the diff to help RefDiff improve detection performance. During the research I developed Diff Extractor and Diff Encoder for extracting and encoding diffs, transformed diffs into arrays for refactoring information mining, and trained two models: 1. Diff Structure Feature Model, which determines the type of refactoring based on the structural features of the refactored diffs and can be used as a result checker, which improves the overall performance of RefDiff by checking for false positives in the RefDiff detection results. 2. Diff Feature Matching Network, which is trained based on the correspondence of the removed and added parts of the refactored diff, has excellent robustness and can solve the problem of missing matching caused by word frequency matching approach. Finally, I design an approach that integrates the two models, optimises Diff Extractor and Diff Encoder based on the characteristics of diff features, adds flags to diff based on the refactoring property, designs new encoding approach emphasising token uniqueness, trains better models and builds a model cross-validation mechanism that allows us to obtain detection results with high levels of confidence. We have shown that our approach, called RefDiff-Model, not only improves the precision of RefDiff 2.0 to 100% and increases the recall to 96.1%, but also continues to support detection tasks in multiple programming languages

    SCALABLE DETECTION OF SOFTWARE REFACTORING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore