4,787 research outputs found

    Combined Time and Information Redundancy for SEU-Tolerance in Energy-Efficient Real-Time Systems

    No full text
    Recently the trade-off between energy consumption and fault-tolerance in real-time systems has been highlighted. These works have focused on dynamic voltage scaling (DVS) to reduce dynamic energy dissipation and on time redundancy to achieve transient-fault tolerance. While the time redundancy technique exploits the available slack time to increase the fault-tolerance by performing recovery executions, DVS exploits slack time to save energy. Therefore we believe there is a resource conflict between the time-redundancy technique and DVS. The first aim of this paper is to propose the usage of information redundancy to solve this problem. We demonstrate through analytical and experimental studies that it is possible to achieve both higher transient fault-tolerance (tolerance to single event upsets (SEU)) and less energy using a combination of information and time redundancy when compared with using time redundancy alone. The second aim of this paper is to analyze the interplay of transient-fault tolerance (SEU-tolerance) and adaptive body biasing (ABB) used to reduce static leakage energy, which has not been addressed in previous studies. We show that the same technique (i.e. the combination of time and information redundancy) is applicable to ABB-enabled systems and provides more advantages than time redundancy alone

    A software controlled voltage tuning system using multi-purpose ring oscillators

    Full text link
    This paper presents a novel software driven voltage tuning method that utilises multi-purpose Ring Oscillators (ROs) to provide process variation and environment sensitive energy reductions. The proposed technique enables voltage tuning based on the observed frequency of the ROs, taken as a representation of the device speed and used to estimate a safe minimum operating voltage at a given core frequency. A conservative linear relationship between RO frequency and silicon speed is used to approximate the critical path of the processor. Using a multi-purpose RO not specifically implemented for critical path characterisation is a unique approach to voltage tuning. The parameters governing the relationship between RO and silicon speed are obtained through the testing of a sample of processors from different wafer regions. These parameters can then be used on all devices of that model. The tuning method and software control framework is demonstrated on a sample of XMOS XS1-U8A-64 embedded microprocessors, yielding a dynamic power saving of up to 25% with no performance reduction and no negative impact on the real-time constraints of the embedded software running on the processor

    Design Solutions For Modular Satellite Architectures

    Get PDF
    The cost-effective access to space envisaged by ESA would open a wide range of new opportunities and markets, but is still many years ahead. There is still a lack of devices, circuits, systems which make possible to develop satellites, ground stations and related services at costs compatible with the budget of academic institutions and small and medium enterprises (SMEs). As soon as the development time and cost of small satellites will fall below a certain threshold (e.g. 100,000 to 500,000 €), appropriate business models will likely develop to ensure a cost-effective and pervasive access to space, and related infrastructures and services. These considerations spurred the activity described in this paper, which is aimed at: - proving the feasibility of low-cost satellites using COTS (Commercial Off The Shelf) devices. This is a new trend in the space industry, which is not yet fully exploited due to the belief that COTS devices are not reliable enough for this kind of applications; - developing a flight model of a flexible and reliable nano-satellite with less than 25,000€; - training students in the field of avionics space systems: the design here described is developed by a team including undergraduate students working towards their graduation work. The educational aspects include the development of specific new university courses; - developing expertise in the field of low-cost avionic systems, both internally (university staff) and externally (graduated students will bring their expertise in their future work activity); - gather and cluster expertise and resources available inside the university around a common high-tech project; - creating a working group composed of both University and SMEs devoted to the application of commercially available technology to space environment. The first step in this direction was the development of a small low cost nano-satellite, started in the year 2004: the name of this project was PiCPoT (Piccolo Cubo del Politecnico di Torino, Small Cube of Politecnico di Torino). The project was carried out by some departments of the Politecnico, in particular Electronics and Aerospace. The main goal of the project was to evaluate the feasibility of using COTS components in a space project in order to greatly reduce costs; the design exploited internal subsystems modularity to allow reuse and further cost reduction for future missions. Starting from the PiCPoT experience, in 2006 we began a new project called ARaMiS (Speretta et al., 2007) which is the Italian acronym for Modular Architecture for Satellites. This work describes how the architecture of the ARaMiS satellite has been obtained from the lesson learned from our former experience. Moreover we describe satellite operations, giving some details of the major subsystems. This work is composed of two parts. The first one describes the design methodology, solutions and techniques that we used to develop the PiCPoT satellite; it gives an overview of its operations, with some details of the major subsystems. Details on the specifications can also be found in (Del Corso et al., 2007; Passerone et al, 2008). The second part, indeed exploits the experience achieved during the PiCPoT development and describes a proposal for a low-cost modular architecture for satellite

    Low Power system Design techniques for mobile computers

    Get PDF
    Portable products are being used increasingly. Because these systems are battery powered, reducing power consumption is vital. In this report we give the properties of low power design and techniques to exploit them on the architecture of the system. We focus on: min imizing capacitance, avoiding unnecessary and wasteful activity, and reducing voltage and frequency. We review energy reduction techniques in the architecture and design of a hand-held computer and the wireless communication system, including error control, sys tem decomposition, communication and MAC protocols, and low power short range net works

    INVESTIGATING THE EFFECTS OF SINGLE-EVENT UPSETS IN STATIC AND DYNAMIC REGISTERS

    Get PDF
    Radiation-induced single-event upsets (SEUs) pose a serious threat to the reliability of registers. The existing SEU analyses for static CMOS registers focus on the circuit-level impact and may underestimate the pertinent SEU information provided through node analysis. This thesis proposes SEU node analysis to evaluate the sensitivity of static registers and apply the obtained node information to improve the robustness of the register through selective node hardening (SNH) technique. Unlike previous hardening techniques such as the Triple Modular Redundancy (TMR) and the Dual Interlocked Cell (DICE) latch, the SNH method does not introduce larger area overhead. Moreover, this thesis also explores the impact of SEUs in dynamic flip-flops, which are appealing for the design of high-performance microprocessors. Previous work either uses the approaches for static flip-flops to evaluate SEU effects in dynamic flip-flops or overlook the SEU injected during the precharge phase. In this thesis, possible SEU sensitive nodes in dynamic flip-flops are re-examined and their window of vulnerability (WOV) is extended. Simulation results for SEU analysis in non-hardened dynamic flip-flops reveal that the last 55.3 % of the precharge time and a 100% evaluation time are affected by SEUs

    Design techniques for low-power systems

    Get PDF
    Portable products are being used increasingly. Because these systems are battery powered, reducing power consumption is vital. In this report we give the properties of low-power design and techniques to exploit them on the architecture of the system. We focus on: minimizing capacitance, avoiding unnecessary and wasteful activity, and reducing voltage and frequency. We review energy reduction techniques in the architecture and design of a hand-held computer and the wireless communication system including error control, system decomposition, communication and MAC protocols, and low-power short range networks

    In-Circuit Mitigation Approach of Single Event Transients for 45nm Flip-Flops

    Get PDF
    Nowadays, radiation-induced Single Event Transients are a leading cause of critical errors in CMOS nanometric integrated circuits. In this work, we propose a workflow for analyzing and mitigating nanometric CMOS integrated circuits to radiation-induced transient errors. The analysis phase starts with the developed Rad-Ray tool for mimicking the passage of the radiation particles through the silicon matter of the cells to identify the features of the generated transient pulses. The tool is integrated with an electrical simulator to evaluate the dynamic behavior of the transient pulses inserted and propagated in the circuit. A tunable mitigation solution is proposed by inserting the filtering block before the storage element, tuned based on the duration and amplitude of the expected transient pulse, identified in the analysis phase. Experimental results are achieved by applying the proposed approach on the 45 nm Flip-Flop component available in the FreePDK design kit, comparing the Dynamic Error Rate for the original Flip-Flop and the mitigated one which shows a reduction of sensitivity up to 56% with respect of the original version, with negligible degradation of performances
    • 

    corecore