314 research outputs found

    A general weak nonlinearity model for LNAs

    Get PDF
    This paper presents a general weak nonlinearity model that can be used to model, analyze and describe the distortion behavior of various low noise amplifier topologies in both narrowband and wideband applications. Represented by compact closed-form expressions our model can be easily utilized by both circuit designers and LNA design automation algorithms.\ud Simulations for three LNA topologies at different operating conditions show that the model describes IM components with an error lower than 0.1% and a one order of magnitude faster response time. The model also indicates that for narrowband IM2@w1-w2 all the nonlinear capacitances can be neglected while for narrowband IM3 the nonlinear capacitances at the drainterminal can be neglected

    Linearity vs. Power Consumption of CMOS LNAs in LTE Systems

    Get PDF
    This paper presents a study of linearity in wideband CMOS low noise amplifiers (LNA) and its relationship to power consumption in context of Long Term Evolution (LTE) system. Using proposed figure of merit to compare 35 state-of-the-art LNA circuits published in recent years, the paper shows a proportional but relatively weak dependence between amplifier performance (that is combined linearity, noise figure and gain) with power consumption. As a result, the predicted increase of LNA performance, necessary to satisfy stringent linearity specifications of LTE standard, may require a significant increase in power, a critical budget planning aspect for both handheld devices and base stations operating in small cells

    HIGH LINEARITY UNIVERSAL LNA DESIGNS FOR NEXT GENERATION WIRELESS APPLICATIONS

    Get PDF
    Design of the next generation (4G) systems is one of the most active and important area of research and development in wireless communications. The 2G and 3G technologies will still co-exist with the 4G for a certain period of time. Other applications such as wireless LAN (Local Area Network) and RFID are also widely used. As a result, there emerges a trend towards integrating multiple wireless functionalities into a single mobile device. Low noise amplifier (LNA), the most critical component of the receiver front-end, determines the sensitivity and noise figure of the receiver and is indispensable for the complete system. To satisfy the need for higher performance and diversity of wireless communication systems, three LNAs with different structures and techniques are proposed in the thesis based on the 4G applications. The first LNA is designed and optimized specifically for LTE applications, which could be easily added to the existing system to support different standards. In this cascode LNA, the nonlinearity coming from the common source (CS) and common gate (CG) stages are analyzed in detail, and a novel linear structure is proposed to enhance the linearity in a relatively wide bandwidth. The LNA has a bandwidth of 900MHz with the linearity of greater than 7.5dBm at the central frequency of 1.2GHz. Testing results show that the proposed structure effectively increases and maintains linearity of the LNA in a wide bandwidth. However, a broadband LNA that covers multiple frequency ranges appears more attractive due to system simplicity and low cost. The second design, a wideband LNA, is proposed to cover multiple wireless standards, such as LTE, RFID, GSM, and CDMA. A novel input-matching network is proposed to relax the tradeoff among noise figure and bandwidth. A high gain (>10dB) in a wide frequency range (1-3GHz) and a minimum NF of 2.5dB are achieved. The LNA consumes only 7mW on a 1.2V supply. The first and second LNAs are designed mainly for the LTE standard because it is the most widely used standard in the 4G communication systems. However, WiMAX, another 4G standard, is also being widely used in many applications. The third design targets on covering both the LTE and the WiMAX. An improved noise cancelling technique with gain enhancing structure is proposed in this design and the bandwidth is enlarged to 8GHz. In this frequency range, a maximum power gain of 14.5dB and a NF of 2.6-4.3dB are achieved. The core area of this LNA is 0.46x0.67mm2 and it consumes 17mW from a 1.2V supply. The three designs in the thesis work are proposed for the multi-standard applications based on the realization of the 4G technologies. The performance tradeoff among noise, linearity, and broadband impedance matching are explored and three new techniques are proposed for the tradeoff relaxation. The measurement results indicate the techniques effectively extend the bandwidth and suppress the increase of the NF and nonlinearity at high frequencies. The three proposed structures can be easily applied to the wideband and multi-standard LNA design

    A Novel High Linearity and Low Power Folded CMOS LNA for UWB Receivers

    Get PDF
    © 2017 World Scientific Publishing Company. Electronic version of an article published as Journal of Circuits, Systems and Computers, Vol. 27, No. 03, 1850047, https://doi.org/10.1142/S0218126618500470.This paper presents a high linearity and low power Low-Noise Amplifier (LNA) for Ultra-Wideband (UWB) receivers based on CHRT 0.18Όm CMOS technology. In this work, the folded topology is adopted in order to reduce the supply voltage and power consumption. Moreover, a band-pass LC filter is embedded in the folded-cascode circuit to extend bandwidth. The transconductance nonlinearity has a great impact on the whole LNA linearity performance under a low supply voltage. A post-distortion (PD) technique employing an auxiliary transistor is applied in the transconductance stage to improve the linearity. The post-layout simulation results indicate that the proposed LNA achieves a maximum power gain of 12.8dB. The input and output reflection coefficients both are lower than -10.0dB over 2.5~11.5GHz. The input third-order intercept point (IIP3) is 5.6dBm at 8GHz and the noise figure (NF) is lower than 4.0dB. The LNA consumes 5.4mW power under a 1V supply voltage.Peer reviewe

    Linearity and Noise Improvement Techniques Employing Low Power in Analog and RF Circuits and Systems

    Get PDF
    The implementation of highly integrated multi-bands and multi-standards reconfigurable radio transceivers is one of the great challenges in the area of integrated circuit technology today. In addition the rapid market growth and high quality demands that require cheaper and smaller solutions, the technical requirements for the transceiver function of a typical wireless device are considerably multi-dimensional. The major key performance metrics facing RFIC designers are power dissipation, speed, noise, linearity, gain, and efficiency. Beside the difficulty of the circuit design due to the trade-offs and correlations that exist between these parameters, the situation becomes more and more challenging when dealing with multi-standard radio systems on a single chip and applications with different requirements on the radio software and hardware aiming at highly flexible dynamic spectrum access. In this dissertation, different solutions are proposed to improve the linearity, reduce the noise and power consumption in analog and RF circuits and systems. A system level design digital approach is proposed to compensate the harmonic distortion components produced by transmitter circuits’ nonlinearities. The approach relies on polyphase multipath scheme uses digital baseband phase rotation pre-distortion aiming at increasing harmonic cancellation and power consumption reduction over other reported techniques. New low power design techniques to enhance the noise and linearity of the receiver front-end LNA are also presented. The two proposed LNAs are fully differential and have a common-gate capacitive cross-coupled topology. The proposed LNAs avoids the use of bulky inductors that leads to area and cost saving. Prototypes are implemented in IBM 90 nm CMOS technology for the two LNAs. The first LNA covers the frequency range of 100 MHz to 1.77 GHz consuming 2.8 mW from a 2 V supply. Measurements show a gain of 23 dB with a 3-dB bandwidth of 1.76 GHz. The minimum NF is 1.85 dB while the input return loss is greater than 10 dB across the entire band. The second LNA covers the frequency range of 100 MHz to 1.6 GHz. A 6 dBm third-order input intercept point, IIP3, is measured at the maximum gain frequency. The core consumes low power of 1.55 mW using a 1.8 V supply. The measured voltage gain is 15.5 dB with a 3-dB bandwidth of 1.6 GHz. The LNA has a minimum NF of 3 dB across the whole band while achieving an input return loss greater than 12 dB. Finally, A CMOS single supply operational transconductance amplifier (OTA) is reported. It has high power supply rejection capabilities over the entire gain bandwidth (GBW). The OTA is fabricated on the AMI 0.5 um CMOS process. Measurements show power supply rejection ratio (PSRR) of 120 dB till 10 KHz. At 10 MHz, PSRR is 40 dB. The high performance PSRR is achieved using a high impedance current source and two noise reduction techniques. The OTA offers a very low current consumption of 25 uA from a 3.3 V supply

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-”m SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86Âș, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-”m SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86Âș, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    Blocker Tolerant Radio Architectures

    Get PDF
    Future radio platforms have to be inexpensive and deal with a variety of co- existence issues. The technology trend during the last few years is towards system- on-chip (SoC) that is able to process multiple standards re-using most of the digital resources. A major bottle-neck to this approach is the co-existence of these standards operating at different frequency bands that are hitting the receiver front-end. So the current research is focused on the power, area and performance optimization of various circuit building blocks of a radio for current and incoming standards. Firstly, a linearization technique for low noise amplifiers (LNAs) called, Robust Derivative Superposition (RDS) method is proposed. RDS technique is insensitive to Process Voltage and Temperature (P.V.T.) variations and is validated with two low noise transconductance amplifier (LNTA) designs in 0.18”m CMOS technology. Measurement results from 5 dies of a resistive terminated LNTA shows that the pro- posed method improves IM3 over 20dB for input power up to -18dBm, and improves IIP_(3) by 10dB. A 2V inductor-less broadband 0.3 to 2.8GHz balun-LNTA employing the proposed RDS linearization technique was designed and measured. It achieves noise figure of 6.5dB, IIP3 of 16.8dBm, and P1dB of 0.5dBm having a power consumption of 14.2mW. The balun LNTA occupies an active area of 0.06mm2. Secondly, the design of two high linearity, inductor-less, broadband LNTAs employing noise and distortion cancellation techniques is presented. Main design issues and the performance trade-offs of the circuits are discussed. In the fully differential architecture, the first LNTA covers 0.1-2GHz bandwidth and achieves a minimum noise figure (NFmin) of 3dB, IIP_(3) of 10dBm and a P_(1dB) of 0dBm while dissipating 30.2mW. The 2^(nd) low power bulk driven LNTA with 16mW power consumption achieves NFmin of 3.4dB, IIP3 of 11dBm and 0.1-3GHz bandwidth. Each LNTA occupy an active area of 0.06mm2 in 45nm CMOS. Thirdly, a continuous-time low-pass ∆ΣADC equipped with design techniques to provide robustness against loop saturation due to blockers is presented. Loop over- load detection and correction is employed to improve the ADC’s tolerance to blockers; a fast overload detector activates the input attenuator, maintaining the ADC in linear operation. To further improve ADC’s blocker tolerance, a minimally-invasive integrated low-pass filter that reduces the most critical adjacent/alternate channel blockers is implemented. An ADC prototype is implemented in a 90nm CMOS technology and experimentally it achieves 69dB dynamic range over a 20MHz bandwidth with a sampling frequency of 500MHz and 17.1mW of power consumption. The alternate channel blocker tolerance at the most critical frequency is as high as -5.5dBFS while the conventional feed-forward modulator becomes unstable at -23.5dBFS of blocker power. The proposed blocker rejection techniques are minimally-invasive and take less than 0.3”sec to settle after a strong agile blocker appears. Finally, a new radio partitioning methodology that gives robust analog and mixed signal radio development in scaled technology for SoC integration, and the co-design of RF FEM-antenna system is presented. Based on the proposed methodology, a CMOS RF front-end module (FEM) with power amplifier (PA), LNA and transmit/receive switch, co-designed with antenna is implemented. The RF FEM circuit is implemented in a 32nm CMOS technology. Post extracted simulations show a noise figure < 2.5dB, S_(21) of 14dB, IIP3 of 7dBm and P1dB of -8dBm for the receiver. Total power consumption of the receiver is 11.8mW from a 1V supply. On the trans- mitter side, PA achieves peak RF output power of 22.34dBm with peak power added efficiency (PAE) of 65% and PAE of 33% with linearization at -6dB power back off. Simulations show an efficiency of 80% for the miniaturized dipole antenna

    Reconfigurable Receiver Front-Ends for Advanced Telecommunication Technologies

    Get PDF
    The exponential growth of converging technologies, including augmented reality, autonomous vehicles, machine-to-machine and machine-to-human interactions, biomedical and environmental sensory systems, and artificial intelligence, is driving the need for robust infrastructural systems capable of handling vast data volumes between end users and service providers. This demand has prompted a significant evolution in wireless communication, with 5G and subsequent generations requiring exponentially improved spectral and energy efficiency compared to their predecessors. Achieving this entails intricate strategies such as advanced digital modulations, broader channel bandwidths, complex spectrum sharing, and carrier aggregation scenarios. A particularly challenging aspect arises in the form of non-contiguous aggregation of up to six carrier components across the frequency range 1 (FR1). This necessitates receiver front-ends to effectively reject out-of-band (OOB) interferences while maintaining high-performance in-band (IB) operation. Reconfigurability becomes pivotal in such dynamic environments, where frequency resource allocation, signal strength, and interference levels continuously change. Software-defined radios (SDRs) and cognitive radios (CRs) emerge as solutions, with direct RF-sampling receivers offering a suitable architecture in which the frequency translation is entirely performed in digital domain to avoid analog mixing issues. Moreover, direct RF- sampling receivers facilitate spectrum observation, which is crucial to identify free zones, and detect interferences. Acoustic and distributed filters offer impressive dynamic range and sharp roll off characteristics, but their bulkiness and lack of electronic adjustment capabilities limit their practicality. Active filters, on the other hand, present opportunities for integration in advanced CMOS technology, addressing size constraints and providing versatile programmability. However, concerns about power consumption, noise generation, and linearity in active filters require careful consideration.This thesis primarily focuses on the design and implementation of a low-voltage, low-power RFFE tailored for direct sampling receivers in 5G FR1 applications. The RFFE consists of a balun low-noise amplifier (LNA), a Q-enhanced filter, and a programmable gain amplifier (PGA). The balun-LNA employs noise cancellation, current reuse, and gm boosting for wideband gain and input impedance matching. Leveraging FD-SOI technology allows for programmable gain and linearity via body biasing. The LNA's operational state ranges between high-performance and high-tolerance modes, which are apt for sensitivityand blocking tests, respectively. The Q-enhanced filter adopts noise-cancelling, current-reuse, and programmable Gm-cells to realize a fourth-order response using two resonators. The fourth-order filter response is achieved by subtracting the individual response of these resonators. Compared to cascaded and magnetically coupled fourth-order filters, this technique maintains the large dynamic range of second-order resonators. Fabricated in 22-nm FD-SOI technology, the RFFE achieves 1%-40% fractional bandwidth (FBW) adjustability from 1.7 GHz to 6.4 GHz, 4.6 dB noise figure (NF) and an OOB third-order intermodulation intercept point (IIP3) of 22 dBm. Furthermore, concerning the implementation uncertainties and potential variations of temperature and supply voltage, design margins have been considered and a hybrid calibration scheme is introduced. A combination of on-chip and off-chip calibration based on noise response is employed to effectively adjust the quality factors, Gm-cells, and resonance frequencies, ensuring desired bandpass response. To optimize and accelerate the calibration process, a reinforcement learning (RL) agent is used.Anticipating future trends, the concept of the Q-enhanced filter extends to a multiple-mode filter for 6G upper mid-band applications. Covering the frequency range from 8 to 20 GHz, this RFFE can be configured as a fourth-order dual-band filter, two bandpass filters (BPFs) with an OOB notch, or a BPF with an IB notch. In cognitive radios, the filter’s transmission zeros can be positioned with respect to the carrier frequencies of interfering signals to yield over 50 dB blocker rejection
    • 

    corecore