1,637 research outputs found

    Real-Time Cross-Layer Routing Protocol for Ad Hoc Wireless Sensor Networks

    Get PDF
    Reliable and energy efficient routing is a critical issue in Wireless Sensor Networks (WSNs) deployments. Many approaches have been proposed for WSN routing, but sensor field implementations, compared to computer simulations and fully-controlled testbeds, tend to be lacking in the literature and not fully documented. Typically, WSNs provide the ability to gather information cheaply, accurately and reliably over both small and vast physical regions. Unlike other large data network forms, where the ultimate input/output interface is a human being, WSNs are about collecting data from unattended physical environments. Although WSNs are being studied on a global scale, the major current research is still focusing on simulations experiments. In particular for sensor networks, which have to deal with very stringent resource limitations and that are exposed to severe physical conditions, real experiments with real applications are essential. In addition, the effectiveness of simulation studies is severely limited in terms of the difficulty in modeling the complexities of the radio environment, power consumption on sensor devices, and the interactions between the physical, network and application layers. The routing problem in ad hoc WSNs is nontrivial issue because of sensor node failures due to restricted recourses. Thus, the routing protocols of WSNs encounter two conflicting issue: on the one hand, in order to optimise routes, frequent topology updates are required, while on the other hand, frequent topology updates result in imbalanced energy dissipation and higher message overhead. In the literature, such as in (Rahul et al., 2002), (Woo et al., 2003), (TinyOS, 2004), (Gnawali et al., 2009) and (Burri et al., 2007) several authors have presented routing algorithms for WSNs that consider purely one or two metrics at most in attempting to optimise routes while attempting to keep small message overhead and balanced energy dissipation. Recent studies on energy efficient routing in multihop WSNs have shown a great reliance on radio link quality in the path selection process. If sensor nodes along the routing path and closer to the base station advertise a high quality link to forwarding upstream packets, these sensor nodes will experience a faster depletion rate in their residual energy. This results in a topological routing hole or network partitioning as stated and resolved in and (Daabaj 2010). This chapter presents an empirical study on how to improve energy efficiency for reliable multihop communication by developing a real-time cross-layer lifetime-oriented routing protocol and integrating useful routing information from different layers to examine their joint benefit on the lifetime of individual sensor nodes and the entire sensor network. The proposed approach aims to balance the workload and energy usage among relay nodes to achieve balanced energy dissipation, thereby maximizing the functional network lifetime. The obtained experimental results are presented from prototype real-network experiments based on Crossbow’s sensor motes (Crossbow, 2010), i.e., Mica2 low-power wireless sensor platforms (Crossbow, 2010). The distributed real-time routing protocol which is proposed In this chapter aims to face the dynamics of the real world sensor networks and also to discover multiple paths between the base station and source sensor nodes. The proposed routing protocol is compared experimentally with a reliability-oriented collection-tree protocol, i.e., the TinyOS MintRoute protocol (Woo et al., 2003). The experimental results show that our proposed protocol has a higher node energy efficiency, lower control overhead, and fair average delay

    PluralisMAC: a generic multi-MAC framework for heterogeneous, multiservice wireless networks, applied to smart containers

    Get PDF
    Developing energy-efficient MAC protocols for lightweight wireless systems has been a challenging task for decades because of the specific requirements of various applications and the varying environments in which wireless systems are deployed. Many MAC protocols for wireless networks have been proposed, often custom-made for a specific application. It is clear that one MAC does not fit all the requirements. So, how should a MAC layer deal with an application that has several modes (each with different requirements) or with the deployment of another application during the lifetime of the system? Especially in a mobile wireless system, like Smart Monitoring of Containers, we cannot know in advance the application state (empty container versus stuffed container). Dynamic switching between different energy-efficient MAC strategies is needed. Our architecture, called PluralisMAC, contains a generic multi-MAC framework and a generic neighbour monitoring and filtering framework. To validate the real-world feasibility of our architecture, we have implemented it in TinyOS and have done experiments on the TMote Sky nodes in the w-iLab.t testbed. Experimental results show that dynamic switching between MAC strategies is possible with minimal receive chain overhead, while meeting the various application requirements (reliability and low-energy consumption)

    An approach to pervasive monitoring in dynamic learning contexts : data sensing, communication support and awareness provision

    Get PDF
    It is within the capabilities of current technology to support the emerging learning paradigms. These paradigms suggest that today’s learning activities and environments are pervas ive and require a higher level of dynamism than the traditional learning contexts. Therefore, we have to rethink our approach to learning and use technology not only as a digital information support, but also as an instrument to reinforce knowledge, foster collaboration, promote creativity and provide richer learning experiences. Particularly, this thesis was motivated by the rapidly growing number of smartphone users and the fact that these devices are increasingly becoming more and more resource-rich, in terms of their communication and sensing technologies, display capabilities battery autonomy, etc. Hence, this dissertation benefits from the ubiquity and development of mobile technology, aiming to bridge the gap between the challenges posed by modern learning requirements and the capabilities of current technology. The sensors embedded in smartphones can be used to capture diverse behavioural and social aspects of the users. For example, using microphone and Bluetooth is possible to identify conversation patterns, discover users in proximity and detect face-to-face meetings. This fact opens up exciting possibilities to monitor the behaviour of the user and to provide meaningful feedback. This feedback offers useful information that can help people be aware of and reflect on their behaviour and its effects, and take the necessary actions to improve them. Consequently, we propose a pervasive monitoring system that take advantage of the capabilities of modern smartphones, us ing them to s upport the awarenes s provis ion about as pects of the activities that take place in today’s pervas ive learning environments. This pervasive monitoring system provides (i) an autonomous sensing platform to capture complex information about processes and interactions that take place across multiple learning environments, (ii) an on-demand and s elf-m anaged communication infras tructure, and (ii) a dis play facility to provide “awarenes s inform ation” to the s tudents and/or lecturers. For the proposed system, we followed a research approach that have three main components. First, the description of a generalized framework for pervasive sensing that enables collaborative sensing interactions between smartphones and other types of devices. By allowing complex data capture interactions with diverse remote sensors, devices and data sources, this framework allows to improve the information quality while saving energy in the local device. Second, the evaluation, through a real-world deployment, of the suitability of ad hoc networks to support the diverse communication processes required for pervasive monitoring. This component also includes a method to improve the scalability and reduce the costs of these networks. Third, the design of two awareness mechanisms to allow flexible provision of information in dynamic and heterogeneous learning contexts. These mechanisms rely on the use of smartphones as adaptable devices that can be used directly as awareness displays or as communication bridges to enable interaction with other remote displays available in the environment. Diverse aspects of the proposed system were evaluated through a number of simulations, real-world experiments, user studies and prototype evaluations. The experimental evaluation of the data capture and communication aspects of the system provided empirical evidence of the usefulness and suitability of the proposed approach to support the development of pervasive monitoring solutions. In addition, the proof-of-concept deployments of the proposed awareness mechanisms, performed in both laboratory and real-world learning environments, provided quantitative and qualitative indicators that such mechanisms improve the quality of the awareness information and the user experienceLa tecnología moderna tiene capacidad de dar apoyo a los paradigmas de aprendizaje emergentes. Estos paradigmas sugieren que las actividades de aprendizaje actuales, caracterizadas por la ubicuidad de entornos, son más dinámicas y complejas que los contextos de aprendizaje tradicionales. Por tanto, tenemos que reformular nuestro acercamiento al aprendizaje, consiguiendo que la tecnología sirva no solo como mero soporte de información, sino como medio para reforzar el conocimiento, fomentar la colaboración, estimular la creatividad y proporcionar experiencias de aprendizaje enriquecedoras. Esta tesis doctoral está motivada por el vertiginoso crecimiento de usuarios de smartphones y el hecho de que estos son cada vez más potentes en cuanto a tecnologías de comunicación, sensores, displays, autonomía energética, etc. Por tanto, esta tesis aprovecha la ubicuidad y el desarrollo de esta tecnología, con el objetivo de reducir la brecha entre los desafíos del aprendizaje moderno y las capacidades de la tecnología actual. Los sensores integrados en los smartphones pueden ser utilizados para reconocer diversos aspectos del comportamiento individual y social de los usuarios. Por ejemplo, a través del micrófono y el Bluetooth, es posible determinar patrones de conversación, encontrar usuarios cercanos y detectar reuniones presenciales. Este hecho abre un interesante abanico de posibilidades, pudiendo monitorizar aspectos del comportamiento del usuario y proveer un feedback significativo. Dicho feedback, puede ayudar a los usuarios a reflexionar sobre su comportamiento y los efectos que provoca, con el fin de tomar medidas necesarias para mejorarlo. Proponemos un sistema de monitorización generalizado que aproveche las capacidades de los smartphones para proporcionar información a los usuarios, ayudándolos a percibir y tomar conciencia sobre diversos aspectos de las actividades que se desarrollan en contextos de aprendizaje modernos. Este sistema ofrece: (i) una plataforma de detección autónoma, que captura información compleja sobre los procesos e interacciones de aprendizaje; (ii) una infraestructura de comunicación autogestionable y; (iii) un servicio de visualización que provee “información de percepción” a estudiantes y/o profesores. Para la elaboración de este sistema nos hemos centrado en tres áreas de investigación. Primero, la descripción de una infraestructura de detección generalizada, que facilita interacciones entre smartphones y otros dispositivos. Al permitir interacciones complejas para la captura de datos entre diversos sensores, dispositivos y fuentes de datos remotos, esta infraestructura consigue mejorar la calidad de la información y ahorrar energía en el dispositivo local. Segundo, la evaluación, a través de pruebas reales, de la idoneidad de las redes ad hoc como apoyo de los diversos procesos de comunicación requeridos en la monitorización generalizada. Este área incluye un método que incrementa la escalabilidad y reduce el coste de estas redes. Tercero, el diseño de dos mecanismos de percepción que permiten la provisión flexible de información en contextos de aprendizaje dinámicos y heterogéneos. Estos mecanismos descansan en la versatilidad de los smartphones, que pueden ser utilizados directamente como displays de percepción o como puentes de comunicación que habilitan la interacción con otros displays remotos del entorno. Diferentes aspectos del sistema propuesto han sido evaluados a través de simulaciones, experimentos reales, estudios de usuarios y evaluaciones de prototipos. La evaluación experimental proporcionó evidencia empírica de la idoneidad del sistema para apoyar el desarrollo de soluciones de monitorización generalizadas. Además, las pruebas de concepto realizadas tanto en entornos de aprendizajes reales como en el laboratorio, aportaron indicadores cuantitativos y cualitativos de que estos mecanismos mejoran la calidad de la información de percepción y la experiencia del usuario.Postprint (published version

    Analysis, characterization and optimization of the energy efficiency on softwarized mobile platforms

    Get PDF
    Mención Internacional en el título de doctorLa inminente 5ª generación de sistemas móviles (5G) está a punto de revolucionar la industria, trayendo una nueva arquitectura orientada a los nuevos mercados verticales y servicios. Debido a esto, el 5G Infrastructure Public Private Partnership (5G-PPP) ha especificado una lista de Indicadores de Rendimiento Clave (KPI) que todo sistema 5G tiene que soportar, por ejemplo incrementar por 1000 el volumen de datos, de 10 a 100 veces m´as dispositivos conectados o consumos energéticos 10 veces inferiores. Con el fin de conseguir estos requisitos, se espera expandir los despligues actuales usando mas Puntos de Acceso (PoA) incrementando así su densidad con múltiples tecnologías inalámbricas. Esta estrategia de despliegue masivo tiene una contrapartida en la eficiencia energética, generando un conflicto con el KPI de reducir por 10 el consumo energético. En este contexto, la comunidad investigadora ha propuesto nuevos paradigmas para alcanzar los requisitos impuestos para los sistemas 5G, siendo materializados en tecnologías como Redes Definidas por Software (SDN) y Virtualización de Funciones de Red (NFV). Estos nuevos paradigmas son el primer paso hacia la softwarización de los despliegues móviles, incorporando nuevos grados de flexibilidad y reconfigurabilidad de la Red de Acceso Radio (RAN). En esta tesis, presentamos primero un análisis detallado y caracterización de las redes móviles softwarizadas. Consideramos el software como la base de la nueva generación de redes celulares y, por lo tanto, analizaremos y caracterizaremos el impacto en la eficiencia energética de estos sistemas. La primera meta de este trabajo es caracterizar las plataformas software disponibles para Radios Definidas por Software (SDR), centrándonos en las dos soluciones principales de código abierto: OpenAirInterface (OAI) y srsLTE. Como resultado, proveemos una metodología para analizar y caracterizar el rendimiento de estas soluciones en función del uso de la CPU, rendimiento de red, compatibilidad y extensibilidad de dicho software. Una vez hemos entendido qué rendimiento podemos esperar de este tipo de soluciones, estudiamos un prototipo SDR construido con aceleración hardware, que emplea una plataformas basada en FPGA. Este prototipo está diseñado para incluir capacidad de ser consciente de la energía, permiento al sistema ser reconfigurado para minimizar la huella energética cuando sea posible. Con el fin de validar el diseño de nuestro sistema, más tarde presentamos una plataforma para caracterizar la energía que será empleada para medir experimentalmente el consumo energético de dispositivos reales. En nuestro enfoque, realizamos dos tipos de análisis: a pequeña escala de tiempo y a gran escala de tiempo. Por lo tanto, para validar nuestro entorno de medidas, caracterizamos a través de análisis numérico los algoritmos para la Adaptación de la Tasa (RA) en IEEE 802.11, para entonces comparar nuestros resultados teóricos con los experimentales. A continuación extendemos nuestro análisis a la plataforma SDR acelerada por hardware previamente mencionada. Nuestros resultados experimentales muestran que nuestra sistema puede en efecto reducir la huella energética reconfigurando el despligue del sistema. Entonces, la escala de tiempos es elevada y presentamos los esquemas para Recursos bajo Demanda (RoD) en despliegues de red ultra-densos. Esta estrategia está basada en apagar/encender dinámicamente los elementos que forman la red con el fin de reducir el total del consumo energético. Por lo tanto, presentamos un modelo analítico en dos sabores, un modelo exacto que predice el comportamiento del sistema con precisión pero con un alto coste computacional y uno simplificado que es más ligero en complejidad mientras que mantiene la precisión. Nuestros resultados muestran que estos esquemas pueden efectivamente mejorar la eficiencia energética de los despliegues y mantener la Calidad de Servicio (QoS). Con el fin de probar la plausibilidad de los esquemas RoD, presentamos un plataforma softwarizada que sigue el paradigma SDN, OFTEN (OpenFlow framework for Traffic Engineering in mobile Network with energy awareness). Nuestro diseño está basado en OpenFlow con funcionalidades para hacerlo consciente de la energía. Finalmente, un prototipo real con esta plataforma es presentando, probando así la plausibilidad de los RoD en despligues reales.The upcoming 5th Generation of mobile systems (5G) is about to revolutionize the industry, bringing a new architecture oriented to new vertical markets and services. Due to this, the 5G-PPP has specified a list of Key Performance Indicator (KPI) that 5G systems need to support e.g. increasing the 1000 times higher data volume, 10 to 100 times more connected devices or 10 times lower power consumption. In order to achieve these requirements, it is expected to expand the current deployments using more Points of Attachment (PoA) by increasing their density and by using multiple wireless technologies. This massive deployment strategy triggers a side effect in the energy efficiency though, generating a conflict with the “10 times lower power consumption” KPI. In this context, the research community has proposed novel paradigms to achieve the imposed requirements for 5G systems, being materialized in technologies such as Software Defined Networking (SDN) and Network Function Virtualization (NFV). These new paradigms are the first step to softwarize the mobile network deployments, enabling new degrees of flexibility and reconfigurability of the Radio Access Network (RAN). In this thesis, we first present a detailed analysis and characterization of softwarized mobile networking. We consider software as a basis for the next generation of cellular networks and hence, we analyze and characterize the impact on the energy efficiency of these systems. The first goal of this work is to characterize the available software platforms for Software Defined Radio (SDR), focusing on the two main open source solutions: OAI and srsLTE. As result, we provide a methodology to analyze and characterize the performance of these solutions in terms of CPU usage, network performance, compatibility and extensibility of the software. Once we have understood the expected performance for such platformsc, we study an SDR prototype built with hardware acceleration, that employs a FPGA based platform. This prototype is designed to include energy-awareness capabilites, allowing the system to be reconfigured to minimize the energy footprint when possible. In order to validate our system design, we later present an energy characterization platform that we will employ to experimentally measure the energy consumption of real devices. In our approach, we perform two kind of analysis: at short time scale and large time scale. Thus, to validate our approach in short time scale and the energy framework, we have characterized though numerical analysis the Rate Adaptation (RA) algorithms in IEEE 802.11, and then compare our theoretical results to the obtained ones through experimentation. Next we extend our analysis to the hardware accelerated SDR prototype previously mentioned. Our experimental results show that our system can indeed reduce the energy footprint reconfiguring the system deployment. Then, the time scale of our analysis is elevated and we present Resource-on-Demand (RoD) schemes for ultradense network deployments. This strategy is based on dynamically switch on/off the elements that form the network to reduce the overall energy consumption. Hence, we present a analytic model in two flavors, an exact model that accurately predicts the system behaviour but high computational cost and a simplified one that is lighter in complexity while keeping the accuracy. Our results show that these schemes can effectively enhance the energy efficiency of the deployments and mantaining the Quality of Service (QoS). In order to prove the feasibility of RoD, we present a softwarized platform that follows the SDN paradigm, the OFTEN (Open Flow framework for Traffic Engineering in mobile Networks with energy awareness) framework. Our design is based on OpenFlow with energy-awareness functionalities. Finally, a real prototype of this framework is presented, proving the feasibility of the RoD in real deployments.FP7-CROWD (2013-2015) CROWD (Connectivity management for eneRgy Optimised Wireless Dense networks).-- H2020-Flex5GWare (2015-2017) Flex5GWare (Flexible and efficient hardware/software platforms for 5G network elements and devices).Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Gramaglia , Marco.- Secretario: José Nuñez.- Vocal: Fabrizio Giulian
    corecore