63,843 research outputs found

    A Higher-Order Iterative Path Ordering

    Get PDF

    Minimum mean-squared error iterative successive parallel arbitrated decision feedback detectors for DS-CDMA systems

    Get PDF
    In this paper we propose minimum mean squared error (MMSE) iterative successive parallel arbitrated decision feedback (DF) receivers for direct sequence code division multiple access (DS-CDMA) systems. We describe the MMSE design criterion for DF multiuser detectors along with successive, parallel and iterative interference cancellation structures. A novel efficient DF structure that employs successive cancellation with parallel arbitrated branches and a near-optimal low complexity user ordering algorithm are presented. The proposed DF receiver structure and the ordering algorithm are then combined with iterative cascaded DF stages for mitigating the deleterious effects of error propagation for convolutionally encoded systems with both Viterbi and turbo decoding as well as for uncoded schemes. We mathematically study the relations between the MMSE achieved by the analyzed DF structures, including the novel scheme, with imperfect and perfect feedback. Simulation results for an uplink scenario assess the new iterative DF detectors against linear receivers and evaluate the effects of error propagation of the new cancellation methods against existing ones

    Decomposition Based Search - A theoretical and experimental evaluation

    Full text link
    In this paper we present and evaluate a search strategy called Decomposition Based Search (DBS) which is based on two steps: subproblem generation and subproblem solution. The generation of subproblems is done through value ranking and domain splitting. Subdomains are explored so as to generate, according to the heuristic chosen, promising subproblems first. We show that two well known search strategies, Limited Discrepancy Search (LDS) and Iterative Broadening (IB), can be seen as special cases of DBS. First we present a tuning of DBS that visits the same search nodes as IB, but avoids restarts. Then we compare both theoretically and computationally DBS and LDS using the same heuristic. We prove that DBS has a higher probability of being successful than LDS on a comparable number of nodes, under realistic assumptions. Experiments on a constraint satisfaction problem and an optimization problem show that DBS is indeed very effective if compared to LDS.Comment: 16 pages, 8 figures. LIA Technical Report LIA00203, University of Bologna, 200

    Boolean Matrix Factorization Meets Consecutive Ones Property

    No full text
    Boolean matrix factorization is a natural and a popular technique for summarizing binary matrices. In this paper, we study a problem of Boolean matrix factorization where we additionally require that the factor matrices have consecutive ones property (OBMF). A major application of this optimization problem comes from graph visualization: standard techniques for visualizing graphs are circular or linear layout, where nodes are ordered in circle or on a line. A common problem with visualizing graphs is clutter due to too many edges. The standard approach to deal with this is to bundle edges together and represent them as ribbon. We also show that we can use OBMF for edge bundling combined with circular or linear layout techniques. We demonstrate that not only this problem is NP-hard but we cannot have a polynomial-time algorithm that yields a multiplicative approximation guarantee (unless P = NP). On the positive side, we develop a greedy algorithm where at each step we look for the best 1-rank factorization. Since even obtaining 1-rank factorization is NP-hard, we propose an iterative algorithm where we fix one side and and find the other, reverse the roles, and repeat. We show that this step can be done in linear time using pq-trees. We also extend the problem to cyclic ones property and symmetric factorizations. Our experiments show that our algorithms find high-quality factorizations and scale well
    • …
    corecore