443 research outputs found

    Void-handling techniques for routing protocols in underwater sensor networks: survey and challenges

    Get PDF

    A novel cooperative opportunistic routing scheme for underwater sensor networks

    Get PDF
    Increasing attention has recently been devoted to underwater sensor networks (UWSNs) because of their capabilities in the ocean monitoring and resource discovery. UWSNs are faced with different challenges, the most notable of which is perhaps how to efficiently deliver packets taking into account all of the constraints of the available acoustic communication channel. The opportunistic routing provides a reliable solution with the aid of intermediate nodes’ collaboration to relay a packet toward the destination. In this paper, we propose a new routing protocol, called opportunistic void avoidance routing (OVAR), to address the void problem and also the energy-reliability trade-off in the forwarding set selection. OVAR takes advantage of distributed beaconing, constructs the adjacency graph at each hop and selects a forwarding set that holds the best trade-off between reliability and energy efficiency. The unique features of OVAR in selecting the candidate nodes in the vicinity of each other leads to the resolution of the hidden node problem. OVAR is also able to select the forwarding set in any direction from the sender, which increases its flexibility to bypass any kind of void area with the minimum deviation from the optimal path. The results of our extensive simulation study show that OVAR outperforms other protocols in terms of the packet delivery ratio, energy consumption, end-to-end delay, hop count and traversed distance

    Shallow Water Acoustic Networking [Algorithms

    Get PDF
    Acoustic networks of autonomous underwater vehicles (AUVs) cannot typically rely on protocols intended for terrestrial radio networks. This work describes a new location-aware source routing (LASR) protocol shown to provide superior network performance over two commonly used network protocols2014;flooding and dynamic source routing (DSR)2014;in simulation studies of underwater acoustic networks of AUVs. LASR shares some features with DSR but also includes an improved link/route metric and a node tracking system. LASR also replaces DSR's shortest-path routing with the expected transmission count (ETX) metric. This allows LASR to make more informed routing decisions, which greatly increases performance compared to DSR. Provision for a node tracking system is another novel addition: using the time-division multiple access (TDMA) feature of the simulated acoustic modem, LASR includes a tracking system that predicts node locations, so that LASR can proactively respond to topology changes. LASR delivers 2-3 times as many messages as flooding in 72% of the simulated missions and delivers 22013;4 times as many messages as DSR in 100% of the missions. In 67% of the simulated missions, LASR delivers messages requiring multiple hops to cross the network with 22013;5 times greater reliability than flooding or DSR

    An opportunistic void avoidance routing protocol for underwater sensor networks

    Get PDF

    An Enhanced Energy Balanced Data Transmission Protocol for Underwater Acoustic Sensor Networks.

    Full text link
    This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes

    Critical Analysis of Data Forwarding Routing Protocols Based on Single path for UWSN

    Get PDF
    In Underwater Wireless Sensor Network (UWSN); the sensor node is responsible to extract the valuable application based information from underwater environment. The application based information covers the applications like: tactical surveillance, assisted navigation, disaster prevention, offshore exploration, pollution monitoring and oceanographic data collection. The design of routing protocol in underwater environment is one of the challenging issues for researchers. This research article focuses the designing issues of the data forwarding routing protocols based on single path. In this article the designing of 2D and 3D architecture of routing protocols are discussed with their different issues. This article also focuses the analytical approach of proposed routing protocols with different parameters, the simulation scenarios of the single path routing protocols with critical analysis; and the open research issues; will help the researchers to further research in the field of routing protocols for UWSN

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Self-organizing Fast Routing Protocols for Underwater Acoustic Communications Networks

    Get PDF
    To address this problem, in this thesis we propose a cross-layer proactive routing initialization mechanism that does not require additional measurements and, at the same time, is energy efficient. Two routing protocols are proposed: Self-Organized Fast Routing Protocol for Radial Underwater Networks (SOFRP) for radial topology and Self-organized Proactive Routing Protocol for Non-uniformly Deployed Underwater Networks (SPRINT) for a randomly deployed network. SOFRP is based on the algorithm to recreate a radial topology with a gateway node, such that packets always use the shortest possible path from source to sink, thus minimizing consumed energy. Collisions are avoided as much as possible during the path initialization. The algorithm is suitable for 2D or 3D areas, and automatically adapts to a varying number of nodes. In SPRINT the routing path to the gateway is formed on the basis of the distance, measured by the signal strength received. The data sending node prefers to choose the neighbor node which is closest to it. It is designed to achieve high data throughput and low energy consumption of the nodes. There is a tradeoff between the throughput and the energy consumption: more distance needs more transmission energy, and more relay nodes (hops) to the destination node affects the throughput. Each hop increases the packet delay and decreases the throughput. Hence, energy consumption requires nearest nodes to be chosen as forwarding node whereas the throughput requires farthest node to be selected to minimize the number of hops. Fecha de lectura de Tesis Doctoral: 11 mayo 2020Underwater Wireless Sensor Networks (UWSNs) constitute an emerging technology for marine surveillance, natural disaster alert and environmental monitoring. Unlike terrestrial Wireless Sensor Networks (WSNs), electromagnetic waves cannot propagate more than few meters in water (high absorption rate). However, acoustic waves can travel long distances in underwater. Therefore, acoustic waves are preferred for underwater communications, but they travel very slow compare to EM waves (typical speed in water is 1500 m/s against 2x10^8 m/s for EM waves). This physical effect makes a high propagation delay and cannot be avoided, but the end-to-end packet delay it can be reduced. Routing delay is one of the major factors in end-to-end packet delay. In reactive routing protocols, when a packet arrives to a node, the node takes some time to select the node to which the data packet would be forwarded. We may reduce the routing delay for time-critical applications by using proactive routing protocols. Other two critical issues in UWSNs are determining the position of the nodes and time synchronization. Wireless sensor nodes need to determine the position of the surrounding nodes to select the next node in the path to reach the sink node. A Global Navigation Satellite System (GNSS) cannot be used because of the very short underwater range of the GNSS signal. Timestamping to estimate the distance is possible but the limited mobility of the UWSN nodes and variation in the propagation speed of the acoustic waves make the time synchronization a challenging task. For these reasons, terrestrial WSN protocols cannot be readily used for underwater acoustic networks
    • 

    corecore