13,419 research outputs found

    A high-throughput MAC protocol for wireless ad hoc networks

    Get PDF
    2005-2006 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Performance evaluation of different transport layer protocols on the IEEE 802.11 and IEEE 802.15.4 MAC/PHY layers for WSN

    Get PDF
    Wireless Sensor Networks (WSN) has gathered lot of attention from the research community lately. Among other WSN communication protocols, transport layer protocol plays a significant role in maintaining the node?s energy budget. In this context we have carried out extensive testing of various transport protocols using IEEE 802.11, IEEE 802.15.4 MAC/PHY protocol and Ad hoc On-Demand Distance Vector Routing (AODV) routing agent for WSN having multi-hop ad-hoc and WPAN network topology. The main contribution of this paper is to find out the dependency of Transport layer on MAC layer. Simulation results indicate that the underlying MAC/PHY layer protocol along with Transport layer protocol plays a vital role in achieving the high throughput, low latency and packet loss rate in WSN. For IEEE 802.11 with RTS/CTS ON high throughput, low packet drop rate and increased end-to-end packet delay is observed. While for IEEE 802.15.4 similar behavior as for IEEE 802.11 (except for UDP) but with improved power efficiency is observed. This has led the foundation for the future development of the proposed cross layered energy efficient transport protocol for multimedia application

    Decentralized Time-Synchronized Channel Swapping for Ad Hoc Wireless Networks

    Get PDF
    International audienceTime-synchronized channel hopping (TSCH) is currently the most efficient solution for collision-free, interferenceavoiding communications in ad hoc wireless networks, such as wireless sensor networks, vehicular networks, and networks of robots or drones. However, all variants of TSCH require some form of centralized coordination to maintain the time-frequency slotting mechanism. This leads to slow convergence to steady state and moderate time-frequency slot utilization, especially under node churn or mobility. We propose decentralized timesynchronized channel swapping (DT-SCS), a novel protocol for medium access control (MAC) in ad hoc wireless networks. Under the proposed protocol, nodes first converge to synchronous beacon packet transmissions across all available channels at the physical layer, with balanced number of nodes in each channel. This is done by the novel coupling of distributed synchronization and desynchronization mechanisms—which are based on the concept of pulse-coupled oscillators—at the MAC layer. Decentralized channel swapping can then take place via peer-to-peer swap requests/acknowledgments made between concurrent transmitters in neighboring channels. We benchmark the convergence and network throughput of DT-SCS, TSCH and the Efficient Multichannel MAC (EM-MAC) protocol (seen as the state-of-the-art in decentralized, interference-avoiding, multichannel MAC protocols) under simulated packet losses at the MAC layer. Moreover, performance results via a Contikibased deployment on TelosB motes reveal that DT-SCS comprises an excellent candidate for decentralized multichannel MAC layer coordination by providing for: quick convergence to steady state,high bandwidth utilization under interference and hidden nodes,and high connectivity

    A Multichannel MAC Protocol for IoT-enabled Cognitive Radio Ad Hoc Networks

    Get PDF
    Cognitive radios have the ability to dynamically sense and access the wireless spectrum, and this ability is a key factor in successfully building Internet-of-Things (IoT)-enabled mobile ad hoc networks. This paper proposes a contention-free token-based multichannel MAC protocol for IoT-enabled Cognitive Radio Ad Hoc Networks (CRAHNs). In this, secondary users of CRAHNs detect activity on the wireless spectrum and then access idle channels licensed by primary users. CRAHNs are divided into clusters, and the channel to use for transmission is determined dynamically from the probability of finding idle primary-user channels. The token-based MAC window size is adaptive, with adjustment according to actual traffic, which reduces both end-to-end MAC contention delay and energy consumption. High throughput and spatial reuse of channels can also be achieved using a dynamic control channel and dynamic schemes for contention windows. We performed extensive simulations to verify that the proposed method can achieve better performance in mobile CRAHNs than other MAC schemes can

    Dynamic Queue Utilization Based MAC for multi-hop Ad Hoc networks

    Get PDF
    The end-to-end throughput in single flow multi-hop Ad Hoc networks decays rapidly with path length. Along the path, the success rate of delivering packets towards the destination decreases due to higher contention, interference, limited buffer size and limited shared bandwidth constraints. In such environments the queues fill up faster in nodes closer to the source than in the nodes nearer the destination. In order to reduce buffer overflow and improve throughput for a saturated network, this paper introduces a new MAC protocol named Dynamic Queue Utilization Based Medium Access Control (DQUB-MAC). The protocol aims to prioritise access to the channel for queues with higher utilization and helps in achieving higher throughput by rapidly draining packets towards the destination. The proposed MAC enhances the performance of an end-to-end data flow by up to 30% for a six hop transmission in a chain topology and is demonstrated to remain competitive for other network topologies and for a variety of packet sizes

    Queue utilization with hop based enhanced arbitrary inter frame spacing MAC for saturated ad HOC networks

    Get PDF
    © 2015 IEEE. Path length of a multi hop Ad Hoc networks has an adverse impact on the end-to-end throughput especially during network saturation. The success rate of forwarding packets towards destination is limited due to interference, contention, limited buffer space, and bandwidth. Real time applications streaming data fill the buffer space at a faster rate at the source and its nearby forwarding nodes since the channel is shared. The aim of this paper is to increase the success rate of forwarding the packets to yield a higher end-to-end throughput. In order to reduce loss of packets due to buffer overflow and enhance the performance of the network for a saturated network, a novel MAC protocol named Queue Utilization with Hop Based Enhanced Arbitrary Inter Frame Spacing based (QU-EAIFS) MAC is proposed for alleviating the problems in saturated Ad Hoc networks. The protocol prioritises the nodes based on its queue utilization and hops travelled by the packet and it helps achieving higher end-toend performance by forwarding the packets with higher rate towards the destination during network saturation. The proposed MAC enhances the end-to-end performance by approximately 40% and 34% for a 5hop and 6hop communication respectively in a chain topology as compared to the standard IEEE802.11b. The performance of the new MAC also outperforms the performance of IEEE 802.11e MAC. In order to validate the protocol, it is also tested with short hops and varying packet sizes and more realistic random topologies
    corecore