148 research outputs found

    Monitoring for Reliable and Secure Power Management Integrated Circuits via Built-In Self-Test

    Get PDF
    abstract: Power management circuits are employed in most electronic integrated systems, including applications for automotive, IoT, and smart wearables. Oftentimes, these power management circuits become a single point of system failure, and since they are present in most modern electronic devices, they become a target for hardware security attacks. Digital circuits are typically more prone to security attacks compared to analog circuits, but malfunctions in digital circuitry can affect the analog performance/parameters of power management circuits. This research studies the effect that these hacks will have on the analog performance of power circuits, specifically linear and switching power regulators/converters. Apart from security attacks, these circuits suffer from performance degradations due to temperature, aging, and load stress. Power management circuits usually consist of regulators or converters that regulate the load’s voltage supply by employing a feedback loop, and the stability of the feedback loop is a critical parameter in the system design. Oftentimes, the passive components employed in these circuits shift in value over varying conditions and may cause instability within the power converter. Therefore, variations in the passive components, as well as malicious hardware security attacks, can degrade regulator performance and affect the system’s stability. The traditional ways of detecting phase margin, which indicates system stability, employ techniques that require the converter to be in open loop, and hence can’t be used while the system is deployed in-the-field under normal operation. Aging of components and security attacks may occur after the power management systems have completed post-production test and have been deployed, and they may not cause catastrophic failure of the system, hence making them difficult to detect. These two issues of component variations and security attacks can be detected during normal operation over the product lifetime, if the frequency response of the power converter can be monitored in-situ and in-field. This work presents a method to monitor the phase margin (stability) of a power converter without affecting its normal mode of operation by injecting a white noise/ pseudo random binary sequence (PRBS). Furthermore, this work investigates the analog performance parameters, including phase margin, that are affected by various digital hacks on the control circuitry associated with power converters. A case study of potential hardware attacks is completed for a linear low-dropout regulator (LDO).Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration

    A Ringamp-Assisted, Output Capacitor-less Analog CMOS Low-Dropout Voltage Regulator

    Get PDF
    Continued advancements in state-of-the-art integrated circuits have furthered trends toward higher computational performance and increased functionality within smaller circuit area footprints, all while improving power efficiencies to meet the demands of mobile and battery-powered applications. A significant portion of these advancements have been enabled by continued scaling of CMOS technology into smaller process node sizes, facilitating faster digital systems and power optimized computation. However, this scaling has degraded classic analog amplifying circuit structures with reduced voltage headroom and lower device output resistance; and thus, lower available intrinsic gain. This work investigates these trends and their impact for fine-grain Low-Dropout (LDO) Voltage Regulators, leading to a presented design methodology and implementation of a state-of-the-art Ringamp-Assisted, Output Capacitor-less Analog CMOS LDO Voltage Regulator capable of both power scaling and process node scaling for general SoC applications

    An accurate, trimless, high PSRR, low-voltage, CMOS bandgap reference IC

    Get PDF
    Bandgap reference circuits are used in a host of analog, digital, and mixed-signal systems to establish an accurate voltage standard for the entire IC. The accuracy of the bandgap reference voltage under steady-state (dc) and transient (ac) conditions is critical to obtain high system performance. In this work, the impact of process, power-supply, load, and temperature variations and package stresses on the dc and ac accuracy of bandgap reference circuits has been analyzed. Based on this analysis, the a bandgap reference that 1. has high dc accuracy despite process and temperature variations and package stresses, without resorting to expensive trimming or noisy switching schemes, 2. has high dc and ac accuracy despite power-supply variations, without using large off-chip capacitors that increase bill-of-material costs, 3. has high dc and ac accuracy despite load variations, without resorting to error-inducing buffers, 4. is capable of producing a sub-bandgap reference voltage with a low power-supply, to enable it to operate in modern, battery-operated portable applications, 5. utilizes a standard CMOS process, to lower manufacturing costs, and 6. is integrated, to consume less board space has been proposed. The functionality of critical components of the system has been verified through prototypes after which the performance of the complete system has been evaluated by integrating all the individual components on an IC. The proposed CMOS bandgap reference can withstand 5mA of load variations while generating a reference voltage of 890mV that is accurate with respect to temperature to the first order. It exhibits a trimless, dc 3-sigma accuracy performance of 0.84% over a temperature range of -40°C to 125°C and has a worst case ac power-supply ripple rejection (PSRR) performance of 30dB up to 50MHz using 60pF of on-chip capacitance. All the proposed techniques lead to the development of a CMOS bandgap reference that meets the low-cost, high-accuracy demands of state-of-the-art System-on-Chip environments.Ph.D.Committee Chair: Rincon-Mora, Gabriel; Committee Member: Ayazi, Farrokh; Committee Member: Bhatti, Pamela; Committee Member: Leach, W. Marshall; Committee Member: Morley, Thoma

    CMOS Design of Reconfigurable SoC Systems for Impedance Sensor Devices

    Get PDF
    La rápida evolución en el campo de los sensores inteligentes, junto con los avances en las tecnologías de la computación y la comunicación, está revolucionando la forma en que recopilamos y analizamos datos del mundo físico para tomar decisiones, facilitando nuevas soluciones que desempeñan tareas que antes eran inconcebibles de lograr.La inclusión en un mismo dado de silicio de todos los elementos necesarios para un proceso de monitorización y actuación ha sido posible gracias a los avances en micro (y nano) electrónica. Al mismo tiempo, la evolución de las tecnologías de procesamiento y micromecanizado de superficies de silicio y otros materiales complementarios ha dado lugar al desarrollo de sensores integrados compatibles con CMOS, lo que permite la implementación de matrices de sensores de alta densidad. Así, la combinación de un sistema de adquisición basado en sensores on-Chip, junto con un microprocesador como núcleo digital donde se puede ejecutar la digitalización de señales, el procesamiento y la comunicación de datos proporciona características adicionales como reducción del coste, compacidad, portabilidad, alimentación por batería, facilidad de uso e intercambio inteligente de datos, aumentando su potencial número de aplicaciones.Esta tesis pretende profundizar en el diseño de un sistema portátil de medición de espectroscopía de impedancia de baja potencia operado por batería, basado en tecnologías microelectrónicas CMOS, que pueda integrarse con el sensor, proporcionando una implementación paralelizable sin incrementar significativamente el tamaño o el consumo, pero manteniendo las principales características de fiabilidad y sensibilidad de un instrumento de laboratorio. Esto requiere el diseño tanto de la etapa de gestión de la energía como de las diferentes celdas que conforman la interfaz, que habrán de satisfacer los requisitos de un alto rendimiento a la par que las exigentes restricciones de tamaño mínimo y bajo consumo requeridas en la monitorización portátil, características que son aún más críticas al considerar la tendencia actual hacia matrices de sensores.A nivel de celdas, se proponen diferentes circuitos en un proceso CMOS de 180 nm: un regulador de baja caída de voltaje como unidad de gestión de energía, que proporciona una alimentación de 1.8 V estable, de bajo ruido, precisa e independiente de la carga para todo el sistema; amplificadores de instrumentación con una aproximación completamente diferencial, que incluyen una etapa de entrada de voltaje/corriente configurable, ganancia programable y ancho de banda ajustable, tanto en la frecuencia de corte baja como alta; un multiplicador para conformar la demodulación dual, que está embebido en el amplificador para optimizar consumo y área; y filtros pasa baja totalmente integrados, que actúan como extractores de magnitud de DC, con frecuencias de corte ajustables desde sub-Hz hasta cientos de Hz.<br /

    A fully-integrated 180 nm CMOS 1.2 V low-dropout regulator for low-power portable applications

    Get PDF
    This paper presents the design and postlayout simulation results of a capacitor-less low dropout (LDO) regulator fully integrated in a low-cost standard 180 nm Complementary Metal-Oxide-Semiconductor (CMOS) technology which regulates the output voltage at 1.2 V from a 3.3 to 1.3 V battery over a -40 to 120 degrees C temperature range. To meet with the constraints of system-on-chip (SoC) battery-operated devices, ultralow power (I-q = 8.6 mu A) and minimum area consumption (0.109 mm(2)) are maintained, including a reference voltage V-ref = 0.4 V. It uses a high-gain dynamically biased folded-based error amplifier topology optimized for low-voltage operation that achieves an enhanced regulation-fast transient performance trade-off

    Development of high-performance low-dropout regulators for SoC applications.

    Get PDF
    Or, Pui Ying."July 2010."Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.Includes bibliographical references.Abstracts in English and Chinese.AcknowledgmentsTable of ContentList of FiguresList of TablesList of PublicationsChapter Chapter 1 - --- Background of LDO ResearchChapter 1.1 --- Structure of a LDO --- p.1-1Chapter 1.2 --- Principle of Operation of LDO --- p.1-2Chapter 1.3 --- Steady-State Specification of LDO --- p.1-3Chapter 1.4 --- High-Frequency Specification of LDO --- p.1-3Chapter 1.5 --- Dynamic Specification of LDO --- p.1-4Chapter 1.6 --- An Advanced LDO Structure --- p.1-4Chapter 1.7 --- Contribution and Outline of the Thesis --- p.1-5References --- p.1-6Chapter Chapter 2 - --- PSRR AnalysisChapter 2.1 --- Modeling of the PSRR of LDO --- p.2-3Chapter 2.2 --- Analysis of LDO Circuit Using Proposed Modeling --- p.2-6Chapter 2.3 --- Conclusion of Chapter --- p.2-12References --- p.2-13Chapter Chapter 3- --- An Output-Capacitorless LDO with Direct Voltage-Spike DetectionChapter 3.1 --- Analysis of Output-Capacitorless LDO --- p.3-5Chapter 3.2 --- LDO with Proposed Voltage-Spike Detection Circuit --- p.3-7Chapter 3.3 --- Experimental Results --- p.3-15Chapter 3.4 --- Conclusion of Chapter --- p.3-21References --- p.3-22Chapter Chapter 4 - --- A LDO with Impedance Adjustment and Loop-Gain Boosting TechniqueChapter 4.1 --- Proposed LDO --- p.4-3Chapter 4.2 --- Experimental Results --- p.4-7Chapter 4.3 --- Comparison --- p.4-11Chapter 4.4 --- Conclusion of Chapter --- p.4-12Reference --- p.4-13Chapter Chapter 5 - --- Conclusion and Future Wor

    Power-Efficient and High-Performance Cicruit Techniques for On-Chip Voltage Regulation and Low-Voltage Filtering

    Get PDF
    This dissertation focuses on two projects. The first one is a power supply rejection (PSR) enhanced with fast settling time (TS) bulk-driven feedforward (BDFF) capacitor-less (CL) low-dropout (LDO) regulator. The second project is a high bandwidth (BW) power adjustable low-voltage (LV) active-RC 4th -order Butterworth low pass filter (LPF). As technology improves, faster and more accurate LDOs with high PSR are going to be required for future on-chip applications and systems.The proposed BDFF CL-LDO will accomplish an improved PSR without degrading TS. This would be achieved by injecting supply noise through the pass device’s bulk terminal in order to cancel the supply noise at the output. The supply injection will be achieved by creating a feedforward path, which compared to feedback paths, that doesn’t degrade stability and therefore allows for faster dynamic performance. A high gain control loop would be used to maintain a high accuracy and dc performance, such as line/load regulation. The proposed CL-LDO will target a PSR better than – 90 dB at low frequencies and – 60 dB at 1 MHz for 50 mA of load current (IvL). The CL-LDO will target a loop gain higher than 90 dB, leading to an improved line and load regulation, and unity-gain frequency (UGF) higher than 20 MHz, which will allow a TS faster than 500 ns. The CL-LDO is going to be fabricated in a CMOS 130 nm technology; consume a quiescent current (IQ) of less than 50 μA; for a dropout voltage of 200 mV and an IvL of 50 mA. As technology scales down, speed and performance requirements increase for on-chip communication systems that reflect the current demand for high speed data-oriented applications. However, in small technologies, it becomes harder to achieve high gain and high speed at the same time because the supply voltage (VvDvD) decreases leaving no room for conventional high gain CMOS structures. The proposed active-RC LPF will accomplish a LV high BW operation that would allow such disadvantages to be overcome. The LPF will be implemented using an active RC structure that allows for the high linearity such communication systems demand. In addition, built-in BW and power configurability would address the demands for increased flexibility usually required in such systems. The proposed LV LPF will target a configurable cut-off frequency (ƒо) of 20/40/80/160 MHz with tuning capabilities and power adjustability for each ƒо. The filter will be fabricated in a CMOS 130 nm technology. The filter characteristics are as following: 4th -order, active-RC, LPF, Butterworth response, VDD = 0.6 V, THD higher than 40 dB and a third-order input intercept point (IIP3) higher than 10 dBm

    Custom Integrated Circuit Design for Portable Ultrasound Scanners

    Get PDF

    Efficiency Improvement of LDO Output Based Linear Regulator With Supercapacitor Energy Recovery – A versatile new technique with an example of a 5V to 1.5V version

    Get PDF
    Supercapacitors are used in various industrial applications and the supercapacitors technology is gradually progressing into a mature state. Common applications of supercapacitors are in electric vehicles, hybrid electric vehicles, uninterruptible power supply (UPS) and in portable devices such as cellular phones and laptops. The capacitance values range from fractional Farads to few thousand Farads and their continuos DC voltage ratings are from 2V to 6V. At University of Waikato, a team works on using supercapacitors for improving the efficiency of linear voltage regulators. In particular, this patented technique aims at combining off the shelfs LDO ICs and a supercapacitor array for improving end to end efficiency of linear regulator. My work is aimed at developing the theoretical background and designing prototype circuitry for a voltage regulator for the case of unregulated input supply is more than 3 times of the minimum input voltage requirement of the LDO which is applicable for a 5V to 1.5V regulator. Experimental results are indicated with future suggestions for improvement
    corecore