3,480 research outputs found

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    2023-2024 Catalog

    Get PDF
    The 2023-2024 Governors State University Undergraduate and Graduate Catalog is a comprehensive listing of current information regarding:Degree RequirementsCourse OfferingsUndergraduate and Graduate Rules and Regulation

    Investigation into Photon Emissions as a Side-Channel Leakage in Two Microcontrollers: A Focus on SRAM Blocks

    Get PDF
    Microcontrollers are extensively utilized across a diverse range of applications. However, with the escalating usage of these devices, the risk to their security and the valuable data they process correspondingly intensifies. These devices could potentially be susceptible to various security threats, with side channel leakage standing out as a notable concern. Among the numerous types of side-channel leakages, photon emissions from active devices emerge as a potentially significant concern. These emissions, a characteristic of all semiconductor devices including microcontrollers, occur during their operation. Depending on the operating point and the internal state of the chip, these emissions can reflect the device’s internal operations. Therefore, a malicious individual could potentially exploit these emissions to gain insights into the computations being performed within the device. This dissertation delves into the investigation of photon emissions from the SRAM blocks of two distinct microcontrollers, utilizing a cost-effective setup. The aim is to extract information from these emissions, analyzing them as potential side-channel leakage points. In the first segment of the study, a PIC microcontroller variant is investigated. The quiescent photon emissions from the SRAM are examined. A correlation attack was successfully executed on these emissions, which led to the recovery of the AES encryption key. Furthermore, differential analysis was used to examine the location of SRAM bits. The combination of this information with the application of an image processing method, namely the Structural Similarity Index (SSIM), assisted in revealing the content of SRAM cells from photon emission images. The second segment of this study, for the first time, emphasizes on a RISC-V chip, examining the photon emissions of the SRAM during continuous reading. Probing the photon emissions from the row and column detectors led to the identification of a target word location, which is capable of revealing the AES key. Also, the content of target row was retrieved through the photon emissions originating from the drivers and the SRAM cells themselves. Additionally, the SSIM technique was utilized to determine the address of a targeted word in RISC-V photon emissions which cannot be analyzed through visual inspection. The insights gained from this research contribute to a deeper understanding of side-channel leakage via photon emissions and demonstrate its potential potency in extracting critical information from digital devices. Moreover, this information significantly contributes to the development of innovative security measures, an aspect becoming increasingly crucial in our progressively digitized world

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Nanomaterial fate and bioavailability in freshwater environments

    Get PDF
    Given the widespread use of silver nanomaterials (AgNM), their accidental or intentional release into the environment is inevitable. AgNM release into riverine systems is a daily occurrence, and following their release, they will undoubtedly interact with naturally occurring organic and inorganic particulates and sediment interfaces. At this point, AgNM's long-term threat to freshwater ecosystems is unclear. We must develop our understanding of AgNM fate, toxicity, and bioavailability using testing approaches that systematically investigate AgNM environmental interaction within single-factor and multifactor systems. This body of research aimed to comprehensively examine selected AgNM particles that were tracked within parallel fate scenarios and toxicity and bioavailability studies. Results showed contrasting behavior between the two tested AgNM. Findings also demonstrated that low shear flow is a significant factor influencing the flocculation and settling rates of AgNM, which differentially regulated the persistence and residence time of aqueous phase AgNM within simulated riverine systems. Experiments with low shear flow showed a significant increase in AgNM water column removal and modulated the physicochemistry differentially compared to quiescent systems. The findings on the influence of bed sediment interactions with waterborne AgNM demonstrated that they are a vital process that increases the transfer and exchange of AgNM from the water column to the bed. Toxicity studies showed how abiotic factors could modulate toxicity differentially between aquatic species and how inorganic and organic matter can increase and decrease AgNM toxicity. Exposure studies contrasting singular and multifactor exposures with and without low shear flow demonstrated that they modulate the exposure of AgNM significantly differently. In conclusion, the proof-of-concept flume designs for testing the environmental fate and exposure of AgNM showed promise and that, with further refinement, could be further incorporated into the life-cycle testing framework of ENMs, to produce accurate semi-empirical coefficients for environmental models for the assessment of hazard

    SET2022 : 19th International Conference on Sustainable Energy Technologies 16th to 18th August 2022, Turkey : Sustainable Energy Technologies 2022 Conference Proceedings. Volume 4

    Get PDF
    Papers submitted and presented at SET2022 - the 19th International Conference on Sustainable Energy Technologies in Istanbul, Turkey in August 202

    Exploring the pharmacodynamics of multidrug combinations and using the advances in technology to individualise anaesthetic drug titration

    Get PDF
    In current practice, pharmacokinetic-dynamic (PK/PD) models are frequently used to describe the combined relationship between the time course of drug plasma concentrations (PK) and the time independent relationship between the drug concentration at the receptor site and the clinical effect (PD). This thesis contributes to the knowledge in anaesthetic pharmacology and explores the dose-response relationships of propofol and sevoflurane (with and without the coadministration of remifentanil) in greater detail using PK/PD models. Our studies show that PK/PD models are useful in clinical practice. The concept of neural inertia could have an influence on these models, but is still controversial in humans and it does not break down the essence and applicability of these PK/PD models. Subsequently, we used these models to compare the pharmacodynamics of propofol and sevoflurane (with and without remifentanil) at both a population level as well as at an individual level. This comparison let us describe potency ratios between both hypnotics which is very helpful for anaesthetist when switching between these drugs for any reason during a case. We applied the same PK/PD models and similar potency ratios in clinical practice using the SmartPilot® View, a drug advisory system, to guide anaesthetic drug titration, and we assessed its clinical utility. Finally, we evaluated a novel method to analyse the cerebral drug effect on the EEG using Artificial Intelligence in order to explore the feasibility of whether a single index can quantify the hypnotic effect in a drug-independent way

    Interferometric Imaging of Lightning Initiation through LOFAR: Uncovering the Spontaneous and Not-So-Spontaneous Nature of Lightning Initiation in 3D

    Get PDF
    With recent advances in instrumentation and the continued development and refinement of analytical methods, the hindrances that previously existed in uncovering the physical processes governing the behavior of lightning are diminishing. The focus of this dissertation research, interferometric imaging of lightning initiation through beamforming via the Low Frequency Array (LOFAR), will describe in detail how both the instrumentation and methods cooperate to enable the detection of lightning processes in which are below the level of the galactic and thermal very high frequency (VHF) background on individual antennas within the array. These conditions have proven to be integral in uncovering of two novel methods of lightning initiation. For one event, a broad discharge is observed propagate with a velocity of 4.8 +/- 0.1 x 10^6 m/s while increasing in intensity from below the LOFAR noise level. For the second mode of initiation, a negative discharge was observed to propagate with a velocity of 1.5 x 10^3 m/s, which is three orders of magnitude slower than normal negative leaders. The first shares features with previously conceptualized ideas of how lightning initiates. This is supported by other researchers, but the findings have unique features that are not explained by the current theories how lightning initiates. Furthermore, the second initiation method is new and unlike any other known lightning process. Lastly, it should be noted that the results we present these use true 3D interferometric imaging techniques. Without the development and implementation of these methods the results reported within this work would not be possible. This thesis will briefly discuss the current understanding of lightning and related phenomena to give an overview the topic and context for why the study of lightning is important. This will the be followed by current theories of how lightning initiates, and then by discussion of the development of the 3D interferometric techniques and their implementation. Next, the thesis will present two recently observed processes by which lightning leaders form, after which is a discussion of the implications of these findings and how they are distinct from known lightning processes. Additionally, we will discuss results from the possible detection of gamma ray glows from the thunderstorm balloon campaign. These findings are the result of the updated methodology and instrumentation when this project was transferred to the University of New Hampshire from the Florida Institute of Technology. Lastly, the thesis concludes with a review of the implications of these discoveries and a discussion of future investigations, as well as, propose methods to further uncover additional details of the physical processes behind lightning initiation and where the results of the observations reported in this thesis fit within the current understanding of how lightning initiates

    Northeastern Illinois University, Academic Catalog 2023-2024

    Get PDF
    https://neiudc.neiu.edu/catalogs/1064/thumbnail.jp
    corecore