7 research outputs found

    Low Voltage Low Power Analogue Circuits Design

    Get PDF
    DisertačnĂ­ prĂĄce je zaměƙena na vĂœzkum nejbÄ›ĆŸnějĆĄĂ­ch metod, kterĂ© se vyuĆŸĂ­vajĂ­ pƙi nĂĄvrhu analogovĂœch obvodĆŻ s vyuĆŸitĂ­ nĂ­zkonapěƄovĂœch (LV) a nĂ­zkopƙíkonovĂœch (LP) struktur. Tyto LV LP obvody mohou bĂœt vytvoƙeny dĂ­ky vyspělĂœm technologiĂ­m nebo takĂ© vyuĆŸitĂ­m pokročilĂœch technik nĂĄvrhu. DisertačnĂ­ prĂĄce se zabĂœvĂĄ prĂĄvě pokročilĂœmi technikami nĂĄvrhu, pƙedevĆĄĂ­m pak nekonvenčnĂ­mi. Mezi tyto techniky patƙí vyuĆŸitĂ­ prvkĆŻ s ƙízenĂœm substrĂĄtem (bulk-driven - BD), s plovoucĂ­m hradlem (floating-gate - FG), s kvazi plovoucĂ­m hradlem (quasi-floating-gate - QFG), s ƙízenĂœm substrĂĄtem s plovoucĂ­m hradlem (bulk-driven floating-gate - BD-FG) a s ƙízenĂœm substrĂĄtem s kvazi plovoucĂ­m hradlem (quasi-floating-gate - BD-QFG). PrĂĄce je takĂ© orientovĂĄna na moĆŸnĂ© zpĆŻsoby implementace znĂĄmĂœch a modernĂ­ch aktivnĂ­ch prvkĆŻ pracujĂ­cĂ­ch v napěƄovĂ©m, proudovĂ©m nebo mix-mĂłdu. Mezi tyto prvky lze začlenit zesilovače typu OTA (operational transconductance amplifier), CCII (second generation current conveyor), FB-CCII (fully-differential second generation current conveyor), FB-DDA (fully-balanced differential difference amplifier), VDTA (voltage differencing transconductance amplifier), CC-CDBA (current-controlled current differencing buffered amplifier) a CFOA (current feedback operational amplifier). Za Ășčelem potvrzenĂ­ funkčnosti a chovĂĄnĂ­ vĂœĆĄe zmĂ­něnĂœch struktur a prvkĆŻ byly vytvoƙeny pƙíklady aplikacĂ­, kterĂ© simulujĂ­ usměrƈovacĂ­ a induktančnĂ­ vlastnosti diody, dĂĄle pak filtry dolnĂ­ propusti, pĂĄsmovĂ© propusti a takĂ© univerzĂĄlnĂ­ filtry. VĆĄechny aktivnĂ­ prvky a pƙíklady aplikacĂ­ byly ověƙeny pomocĂ­ PSpice simulacĂ­ s vyuĆŸitĂ­m parametrĆŻ technologie 0,18 m TSMC CMOS. Pro ilustraci pƙesnĂ©ho a ĂșčinnĂ©ho chovĂĄnĂ­ struktur je v disertačnĂ­ prĂĄci zahrnuto velkĂ© mnoĆŸstvĂ­ simulačnĂ­ch vĂœsledkĆŻ.The dissertation thesis is aiming at examining the most common methods adopted by analog circuits' designers in order to achieve low voltage (LV) low power (LP) configurations. The capability of LV LP operation could be achieved either by developed technologies or by design techniques. The thesis is concentrating upon design techniques, especially the non–conventional ones which are bulk–driven (BD), floating–gate (FG), quasi–floating–gate (QFG), bulk–driven floating–gate (BD–FG) and bulk–driven quasi–floating–gate (BD–QFG) techniques. The thesis also looks at ways of implementing structures of well–known and modern active elements operating in voltage–, current–, and mixed–mode such as operational transconductance amplifier (OTA), second generation current conveyor (CCII), fully–differential second generation current conveyor (FB–CCII), fully–balanced differential difference amplifier (FB–DDA), voltage differencing transconductance amplifier (VDTA), current–controlled current differencing buffered amplifier (CC–CDBA) and current feedback operational amplifier (CFOA). In order to confirm the functionality and behavior of these configurations and elements, they have been utilized in application examples such as diode–less rectifier and inductance simulations, as well as low–pass, band–pass and universal filters. All active elements and application examples have been verified by PSpice simulator using the 0.18 m TSMC CMOS parameters. Sufficient numbers of simulated plots are included in this thesis to illustrate the precise and strong behavior of structures.

    NOVEL, LOW POWER, NONLINEAR DILATATION AND EROSION FILTERS REALIZED IN THE CMOS TECHNOLOGY

    Get PDF
    In this paper we propose novel, binary-tree, asynchronous, nonlinear filters suitable for signal processing realized at the transistor level. Two versions of the filter have been proposed, namely the dilatation (Max) and the erosion (Min) one. In the proposed circuits an input signal (current) is sampled in a delay line, controlled by a multiphase clock. In the subsequent stage particular samples are converted to 1-bit digital signals with delays proportional to the values of these samples. In the last step the delays are compared in digital binary-tree structure in order to find either the Min or the Max value, depending on which filter is used. Both circuits have been simulated in the TSMC CMOS 0.18ÎŒm technology. To make the results reliable we applied the corner analysis procedure. The circuits were tested for temperatures ranging from -40 to 120ÂșC, for different transistor models and supply voltages. The circuits offer a precision of about 99% at a typical detection time of 20 ns (for the Max filter) and 100 ns for the Min filter (the worst case scenario). The energy consumed per one input during a single calculation cycle equals 0.32 and 1.57 pJ, for the Max and Min filters, respectively

    An asynchronous,low-power architecture for interleaved neural stimulation, using envelope and phase information

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 122-124).This thesis describes a low-power cochlear-implant processor chip and a charge-balanced stimulation chip that together form a complete processing-and-stimulation cochlear-implant system. The processor chip uses a novel Asynchronous Interleaved Stimulation (AIS) algorithm that preserves phase and amplitude cues in its spectral input while simultaneously minimizing electrode interactions and lowering average stimulation power per electrode. The stimulator chip obviates the need for large D.C. blocking capacitors in neural implants to achieve highly precise charge-balanced stimulation, thus lowering the size and cost of the implant. Thus, this thesis suggests that significant performance, power and cost improvements in the current generation of cochlear implants may be simultaneously possible. The 16-channel ~90 square mm AIS processor chip was built in a 1.5[mu]m VLSI process and consumed 107[mu]W of power over and above that of its analog spectral processing front end, which consumed 250gtW and which has been previously described. The AIS processor was found to faithfully mimic MATLAB implementations of the AIS algorithm. Two perceptual tests of the AIS algorithm with normal-hearing listeners verified that AIS signal reconstructions enabled better melody and speech recognition in noise than traditional envelope-only vocoder simulations of cochlear-implant processing. The average firing rate of the AIS processor was found to be significantly lower than in traditional synchronous stimulators, suggesting that the AIS algorithm and processor can potentially save power and improve hearing performance in cochlear-implant users. The stimulator chip was built in a 0.7glm high-voltage VLSI process and performed dynamic current balancing followed by a shorting phase.(cont.) It achieved <6nA of average DC current error, well below the targeted safety limit of 25nA for cochlear-implant patients. On +6 and -9V rails, the power consumption of a single channel of this chip was 47[mu]W when biasing power is shared by 16 channels. It puts out a charge-balanced stimulation pulse whenever it receives an asynchronous input signal from an AIS processor encoding phase information and 7-bit amplitude information, thus making the AIS processor chip and stimulator chip fully compatible in the cochlear-implant system. The AIS algorithm and charge-balancing circuits described in this work may be useful in other nerve-stimulation prosthetics where good fidelity in input-information encoding, minimization of electrode interactions, low-power strategies for stimulation, and compact charge-balanced stimulation are also important.by Ji-Jon Sit.Ph.D

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    corecore