2,423 research outputs found

    Ultrasonic-Based Environmental Perception for Mobile 5G-Oriented XR Applications

    Get PDF
    One of the sectors that is expected to significantly benefit from 5G network deployment is eXtended Reality (XR). Besides the very high bandwidth, reliability, and Quality of Service (QoS) to be delivered to end users, XR also requires accurate environmental perception for safety reasons: this is fundamental when a user, wearing XR equipment, is immersed in a “virtual” world, but moves in a “real” environment. To overcome this limitation (especially when using low-cost XR equipments, such as cardboards worn by the end user), it is possible to exploit the potentialities offered by Internet of Things (IoT) nodes with sensing/actuating capabilities. In this paper, we rely on ultrasonic sensor-based IoT systems to perceive the surrounding environment and to provide “side information” to XR systems, then performing a preliminary experimental characterization campaign with different ultrasonic IoT system configurations worn by the end user. The combination of the information flows associated with XR and IoT components is enabled by 5G technology. An illustrative experimental scenario, relative to a “Tourism 4.0” IoT-aided VR application deployed by Vodafone in Milan, Italy, is presented

    D5.1 SHM digital twin requirements for residential, industrial buildings and bridges

    Get PDF
    This deliverable presents a report of the needs for structural control on buildings (initial imperfections, deflections at service, stability, rheology) and on bridges (vibrations, modal shapes, deflections, stresses) based on state-of-the-art image-based and sensor-based techniques. To this end, the deliverable identifies and describes strategies that encompass state-of-the-art instrumentation and control for infrastructures (SHM technologies).Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement EconòmicObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPreprin

    Contemporary Inspection and Monitoring for High-Speed Rail System

    Get PDF
    Non-destructive testing (NDT) techniques have been explored and extensively utilised to help maintaining safety operation and improving ride comfort of the rail system. As an ascension of NDT techniques, the structural health monitoring (SHM) brings a new era of real-time condition assessment of rail system without interrupting train service, which is significantly meaningful to high-speed rail (HSR). This chapter first gives a review of NDT techniques of wheels and rails, followed by the recent applications of SHM on HSR enabled by a combination of advanced sensing technologies using optical fibre, piezoelectric and other smart sensors for on-board and online monitoring of the railway system from vehicles to rail infrastructure. An introduction of research frontier and development direction of SHM on HSR is provided subsequently concerning both sensing accuracy and efficiency, through cutting-edge data-driven analytic studies embracing such as wireless sensing and compressive sensing, which answer for the big data’s call brought by the new age of this transport

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    Sensor Technologies for Intelligent Transportation Systems

    Get PDF
    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment

    A review of smartphones based indoor positioning: challenges and applications

    Get PDF
    The continual proliferation of mobile devices has encouraged much effort in using the smartphones for indoor positioning. This article is dedicated to review the most recent and interesting smartphones based indoor navigation systems, ranging from electromagnetic to inertia to visible light ones, with an emphasis on their unique challenges and potential real-world applications. A taxonomy of smartphones sensors will be introduced, which serves as the basis to categorise different positioning systems for reviewing. A set of criteria to be used for the evaluation purpose will be devised. For each sensor category, the most recent, interesting and practical systems will be examined, with detailed discussion on the open research questions for the academics, and the practicality for the potential clients

    Ag-IoT for crop and environment monitoring: Past, present, and future

    Get PDF
    CONTEXT: Automated monitoring of the soil-plant-atmospheric continuum at a high spatiotemporal resolution is a key to transform the labor-intensive, experience-based decision making to an automatic, data-driven approach in agricultural production. Growers could make better management decisions by leveraging the real-time field data while researchers could utilize these data to answer key scientific questions. Traditionally, data collection in agricultural fields, which largely relies on human labor, can only generate limited numbers of data points with low resolution and accuracy. During the last two decades, crop monitoring has drastically evolved with the advancement of modern sensing technologies. Most importantly, the introduction of IoT (Internet of Things) into crop, soil, and microclimate sensing has transformed crop monitoring into a quantitative and data-driven work from a qualitative and experience-based task. OBJECTIVE: Ag-IoT systems enable a data pipeline for modern agriculture that includes data collection, transmission, storage, visualization, analysis, and decision-making. This review serves as a technical guide for Ag-IoT system design and development for crop, soil, and microclimate monitoring. METHODS: It highlighted Ag-IoT platforms presented in 115 academic publications between 2011 and 2021 worldwide. These publications were analyzed based on the types of sensors and actuators used, main control boards, types of farming, crops observed, communication technologies and protocols, power supplies, and energy storage used in Ag-IoT platforms
    corecore