3,845 research outputs found

    Parallel Unsmoothed Aggregation Algebraic Multigrid Algorithms on GPUs

    Full text link
    We design and implement a parallel algebraic multigrid method for isotropic graph Laplacian problems on multicore Graphical Processing Units (GPUs). The proposed AMG method is based on the aggregation framework. The setup phase of the algorithm uses a parallel maximal independent set algorithm in forming aggregates and the resulting coarse level hierarchy is then used in a K-cycle iteration solve phase with a â„“1\ell^1-Jacobi smoother. Numerical tests of a parallel implementation of the method for graphics processors are presented to demonstrate its effectiveness.Comment: 18 pages, 3 figure

    Pseudo-random number generators for Monte Carlo simulations on Graphics Processing Units

    Full text link
    Basic uniform pseudo-random number generators are implemented on ATI Graphics Processing Units (GPU). The performance results of the realized generators (multiplicative linear congruential (GGL), XOR-shift (XOR128), RANECU, RANMAR, RANLUX and Mersenne Twister (MT19937)) on CPU and GPU are discussed. The obtained speed-up factor is hundreds of times in comparison with CPU. RANLUX generator is found to be the most appropriate for using on GPU in Monte Carlo simulations. The brief review of the pseudo-random number generators used in modern software packages for Monte Carlo simulations in high-energy physics is present.Comment: 31 pages, 9 figures, 3 table

    SAPPORO: A way to turn your graphics cards into a GRAPE-6

    Full text link
    We present Sapporo, a library for performing high-precision gravitational N-body simulations on NVIDIA Graphical Processing Units (GPUs). Our library mimics the GRAPE-6 library, and N-body codes currently running on GRAPE-6 can switch to Sapporo by a simple relinking of the library. The precision of our library is comparable to that of GRAPE-6, even though internally the GPU hardware is limited to single precision arithmetics. This limitation is effectively overcome by emulating double precision for calculating the distance between particles. The performance loss of this operation is small (< 20%) compared to the advantage of being able to run at high precision. We tested the library using several GRAPE-6-enabled N-body codes, in particular with Starlab and phiGRAPE. We measured peak performance of 800 Gflop/s for running with 10^6 particles on a PC with four commercial G92 architecture GPUs (two GeForce 9800GX2). As a production test, we simulated a 32k Plummer model with equal mass stars well beyond core collapse. The simulation took 41 days, during which the mean performance was 113 Gflop/s. The GPU did not show any problems from running in a production environment for such an extended period of time.Comment: 13 pages, 9 figures, accepted to New Astronom

    Lattice QCD based on OpenCL

    Get PDF
    We present an OpenCL-based Lattice QCD application using a heatbath algorithm for the pure gauge case and Wilson fermions in the twisted mass formulation. The implementation is platform independent and can be used on AMD or NVIDIA GPUs, as well as on classical CPUs. On the AMD Radeon HD 5870 our double precision dslash implementation performs at 60 GFLOPS over a wide range of lattice sizes. The hybrid Monte-Carlo presented reaches a speedup of four over the reference code running on a server CPU.Comment: 19 pages, 11 figure
    • …
    corecore