43 research outputs found

    Seismic Waves

    Get PDF
    The importance of seismic wave research lies not only in our ability to understand and predict earthquakes and tsunamis, it also reveals information on the Earth's composition and features in much the same way as it led to the discovery of Mohorovicic's discontinuity. As our theoretical understanding of the physics behind seismic waves has grown, physical and numerical modeling have greatly advanced and now augment applied seismology for better prediction and engineering practices. This has led to some novel applications such as using artificially-induced shocks for exploration of the Earth's subsurface and seismic stimulation for increasing the productivity of oil wells. This book demonstrates the latest techniques and advances in seismic wave analysis from theoretical approach, data acquisition and interpretation, to analyses and numerical simulations, as well as research applications. A review process was conducted in cooperation with sincere support by Drs. Hiroshi Takenaka, Yoshio Murai, Jun Matsushima, and Genti Toyokuni

    CRS-stack-based seismic reflection imaging for land data in time and depth domains

    Get PDF
    Land data acquisition often suffers from rough top-surface topography and complicated near-surface conditions. The resulting poor data quality makes conventional data processing very difficult. Under such circumstances, where simple model assumptions may fail, it is of particular importance to extract as much information as possible directly from the measured data. Fortunately, the ongoing increase in available computing power makes advanced data-driven imaging approaches feasible; thus, these have increasingly gained in relevance during the past few years. The common-reflection-surface (CRS) stack, a generalized high-density velocity analysis and stacking process, is one of these promising methods. It is applied in a non-interactive manner and provides, besides an improved zero-offset simulation, an entire set of physically interpretable stacking parameters that include and complement the conventional stacking velocity. For every zero-offset sample, these so-called kinematic wavefield attributes are obtained as a by-product of the data-driven stacking process. As will be shown, they can be applied both to improve the stack itself and to support subsequent processing steps...thesi

    Ore-Body Delineation using Borehole Seismic Techniques for Hard Rock Exploration

    Get PDF
    Very often, economically viable ore deposits are low in volume and located at depth within extremely complex geological environments. Such deposits are difficult to explore. Borehole seismic methods, particularly crosshole reflection imaging, could be utilized to detect and delineate such resources. This study aims to evaluate the true potential of crosshole seismic reflection method for mineral exploration. One of the most promising applications of this method is in finding down-dip extensions of the existing resources

    Analysis of Multi-Component Seismic Data in the Shallow Water Environment of the Arabian Gulf

    Get PDF
    The quality of the seismic data is essential to quantitative reservoir characterization of rock properties and geological structure interpretation. Although marine multi-component seismic data hold a wealth of information about both compressional and shear velocities, the acquisition suffers from high levels of noise, which make the processing a challenging task and drastically decreases optimal value extraction. This dissertation employs a four component (4C) processing workflow via advanced time-frequency-wavenumber filtering and polarization methods to improve data quality for further interpretation and reservoir characterization. The proposed workflow is used to enhance seismic reflected energy and explore the shear wave information in the horizontal components. This study makes use of one 2D seismic line and well log dataset from one offshore in the southern Arabian Gulf (Abu Dhabi, United Arab Emirates). A combination of strong lateral seafloor heterogeneities, shallow water depths (~10m), and hard sea bottom results in highly interfering and complex wave-fields and seemingly noisy seismic data acquired in this shallow water environment. Meanwhile, we expect converted wave modes (PS-S waves) due to the strong reflector at hard sea bottom. In this work, we first propose sophisticated filtering algorithms to attenuate surface waves, and then designed advanced processing sequence combined with existing techniques for converted waves detection. Compared to body waves, surface waves are characterized by low velocity, low frequency and high polarization. First, we utilize the variable factor S transform to transform the seismic data from time domain to time-frequency-wavenumber(TFK) domain. This designed transform provides better resolution control on both time and frequency by adjusting the shape of Gaussian window function through additional parameters. Second, we estimate the impacts of residual surface waves on rotation and suppress those waves using TFK dependent polarization analysis. Polarization attributes, ellipticity and rise angle, are calculated through a developed 3D covariance matrix analysis that exploits the joint relationship of wavenumber, time, frequency and polarization. Those computed attributes are used for attenuating the surface waves and determining radial and transverse components. Third, we introduce the new 4C ocean bottom cable (OBC) processing strategy using both compressional and shear waves to recover the image of the subsurface from noisy seismic data. Comparing the time slices and gathers before and after using the strategy, it is observed that the method, described here, attenuates surface waves and remnant surface waves effectively and improves the signal to noise ratio without weakening the desired reflected signals. The results from this dissertation will find application in reservoir characterization from shear wave and converted wave analysis

    Scaling full seismic waveform inversions

    Get PDF
    The main goal of this research study is to scale full seismic waveform inversions using the adjoint-state method to the data volumes that are nowadays available in seismology. Practical issues hinder the routine application of this, to a certain extent theoretically well understood, method. To a large part this comes down to outdated or flat out missing tools and ways to automate the highly iterative procedure in a reliable way. This thesis tackles these issues in three successive stages. It first introduces a modern and properly designed data processing framework sitting at the very core of all the consecutive developments. The ObsPy toolkit is a Python library providing a bridge for seismology into the scientific Python ecosystem and bestowing seismologists with effortless I/O and a powerful signal processing library, amongst other things. The following chapter deals with a framework designed to handle the specific data management and organization issues arising in full seismic waveform inversions, the Large-scale Seismic Inversion Framework. It has been created to orchestrate the various pieces of data accruing in the course of an iterative waveform inversion. Then, the Adaptable Seismic Data Format, a new, self-describing, and scalable data format for seismology is introduced along with the rationale why it is needed for full waveform inversions in particular and seismology in general. Finally, these developments are put into service to construct a novel full seismic waveform inversion model for elastic subsurface structure beneath the North American continent and the Northern Atlantic well into Europe. The spectral element method is used for the forward and adjoint simulations coupled with windowed time-frequency phase misfit measurements. Later iterations use 72 events, all happening after the USArray project has commenced, resulting in approximately 150`000 three components recordings that are inverted for. 20 L-BFGS iterations yield a model that can produce complete seismograms at a period range between 30 and 120 seconds while comparing favorably to observed data

    Traitement d'antenne et corrélation du bruit sismique ambiant (applications multi-échelles)

    Get PDF
    L'utilisation d'un grand nombre de capteurs sismiques est de plus en plus courant pour imager l'intérieur de notre planète depuis sa surface pour la prospection sismique, jusqu'à sa structure profonde avec la sismologie continentale et globale. L'application d'un traitement d'antenne aux enregistrements issus de réseaux de capteurs permet l'extraction de nouvelles observables et une meilleure compréhension de la propagation des ondes dans les milieux complexes. Parmi ces méthodes, on s'intéresse particulièrement aux traitements simultanés en émission-réception de type double formation de voies (DFV). A l'échelle de la prospection sismique, la DFV est utilisée pour extraire des ondes de volume pouvant être masquées par des ondes de surface plus énergétiques. A l'échelle continentale, les réseaux de sources étant plus rares, on propose d'appliquer la méthode DFV à des signaux reconstruits par corrélation du bruit sismique ambiant. De la même manière que pour un couple de stations, la corrélation d'enregistrements continus permet d'évaluer la fonction de Green entre deux antennes réceptrices. Cette méthode est appliquée à des données du réseau Transportable Array (USArray) afin de mesurer et cartographier la vitesse de phase des ondes de surface au centre des USA. Enfin à l'échelle globale, une combinaison de plusieurs grands réseaux sismologiques est utilisée pour démontrer que la corrélation d'enregistrements continus, dans la gamme de périodes, 5-100s permet la reconstruction des ondes de volume à des distances télésismiques. Une analyse de la contribution respective du bruit ambiant, d'origine océanique, et des séismes est réalisée. On montre que les arrivées tardives des forts séismes, réverbérées à l'intérieur du globe, contribuent de manière importante à la reconstruction des phases profondes. Les ondes de volume reconstruites à partir du bruit ambiant constituent une nouvelle source d'information, complémentaire aux données issues des séismes, et pouvant être utilisée pour imager notre planète.The use of a large number of sensors is becoming more common in seismology at both the global scale for deep Earth studies, and at the exploration geophysics scale for monitoring and subsurface imaging. Seismic arrays require array processing from which new type of observables contribute to a better understanding of the wave propagation complexity. This thesis deals with a subset of these techniques. It first focuses on a way to select and identify different phases between two source-receiver arrays based on the double beamforming (DBF) method. At the exploration geophysics scale, the goal is to identify and separate low-amplitude body waves from high-amplitude dispersive surface waves. At the continental scale, as the source arrays are uncommon, the cross-correlation (CC) method of broadband ambient seismic noise can be used to evaluate the Green's function between two receiver arrays. The combination of DBF and CC is applied on Transportable Array (USArray) data to construct high-resolution phase velocity maps of Rayleigh and Love waves. Finally, at the global scale, by using a large number of sensors, it is shown that body waves can emerge form CC of continuous records in the 5-100s period band. We also analyze the contribution of strong earthquakes and particularly their long lasting reverberated coda. We compare it to the contribution to correlations of the continuous background sources associated with the ocean-crust interaction. The reconstructed body waves constitute a valuable supplement to traditional earthquake data to image and to monitor the structure of the Earth from its surface to the inner core.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Interpretation of equatorial current meter data as internal waves

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1987Garrett and Munk use linear dynamics to synthesize frequency-wavenumber energy spectra for internal waves (GM72, GM75, GM79). The GM internal wave models are horizontally isotropic, vertically symmetric, purely propagating, and universal in both time and space. This set of properties effectively eliminates all the interesting physics, since such models do not allow localized sources and sinks of energy. Thus an important step in understanding internal wave dynamics is to make measurements of deviations from the simple GM models. This thesis continues the search for deviations from the GM models. It has three advantages over earlier work: extensive data from an equatorial region, long time series (2 years), and relatively sophisticated linear internal wave models. Since the GM models are based on mid-latitude data, having data from an equatorial region which has a strong mean current system offers an opportunity to examine a region with a distinctly different basic state. The longer time series mean there is a larger statistical ensemble of realizations, making it possible to detect smaller internal wave signals. The internal wave models include several important extensions to the GM models: horizontal anisotropy and vertical asymmetry, resolution between standing modes and propagating waves, general vertical structure, and kinematic effects of mean shear flow. Also investigated are the effects of scattering on internal waves, effects that are especially strong on the equator because the buoyancy frequency variability is a factor of ten higher than at mid-latitudes. In the high frequency internal wave field considered (frequencies between .125 cph and .458 cph), several features are found that are not included in the GM models. Both the kinematic effects of a mean shear flow and the phase-locking that distinguishes standing modes from propagating waves are observed. There is a seasonal dependence in energy level of roughly 10% of the mean level. At times the wave field is zonally and vertically asymmetric, with resulting energy fluxes that are a small (4% to 10%) fraction of the maximum energy flux the internal wave field could support. The fluxes are, however, as big as many of the postulated sources of energy for the internal wave field.This work has been supported under grants from the National Science Foundation and the Office of Naval Research, grants numbered NSF-89076, ONR-88914, NSF-9l002, NSF-94971, and NSF-93661

    Effects of tool positions on borehole acoustic measurements : a stretched grid finite difference approach

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2003.Includes bibliographical references (leaves 278-286).This dissertation made three contributions to numerical simulation and borehole acoustic logging. The first one is a novel finite difference time domain algorithm that features non- uniform grid, wavelet-based difference operator and anisotropic perfectly matched layer. This algorithm reduces numerical reflections and wave distortions introduced by grid change to a minimum by sampling the physical space with gradually varying mesh. By coordinate stretching, the algorithm discretizes the physical space with variable grid, while solving the wave equation on a uniform mesh. That approach helps retain the advantages pertaining to uniform mesh. Further improvement in efficiency is achieved without losing accuracy by the development of a wavelet-based difference operator. By using a family of compactly supported wavelet function, the wavelet- based finite difference time domain algorithm allows less grid point per wavelength. Coordinate stretching is also employed in deriving an anisotropic perfectly matched layer, superior to currently available perfectly matched layer formulation which re quires field splitting, a process that results in more computer memory requirement for the storage of extra variables. Validations of the algorithm include comparison with analytical solutions, uniform grid FDTD solutions and discrete wavenumber results. The second contribution is a time domain investigation of wave propagations in the logging while drilling situation. Logging while drilling is an emerging downhole acoustic acquisition method. The investigation is focused on soft formations where formation shear velocity is slower than borehole fluid velocity, because shear velocity measurement, one of the key measurements that acoustic logging is designed(cont.) to acquire, is the most problematic in soft formations. Special attention is paid to mode excitations, with respect to frequencies, tool positions and source types, in the hope to shed some light on some highly debated questions regarding tool design and data interpretation. The stretched grid finite difference algorithm is applied. The third contribution is the development of an inversion method to estimate stress magnitudes and directions from borehole acoustic measurements. It is predicted in theory that a crossover in flexural dispersion is an indicator of stress-induced anisotropy dominating over other sources of intrinsic anisotropy. The prediction is subsequently verified in a scaled-borehole experiment. We are the first ones that observe flexural dispersion crossover in field data. Using the flexural crossover as a stress signature on the borehole acoustic data, we are able to isolate stressed zones. The maximum horizontal stress direction coincides with the polarization direction of far field fast shear. The stress magnitude is related to velocity changes in the stressed state from the zero stress or hydrostatically balanced state, through a perturbation theory developed in the late 1990's. Stress directions estimated in this dissertation are consistent with focal mechanism and borehole breakout data present in the world stress map database.by Xiaojun Huang.Ph.D
    corecore